Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Carbon nanotubes and pleural damage: Perspectives of nanosafety in the light of asbestos experience

Abstract

Carbon nanotubes are molecular-scale one-dimensional manufactured materials which display several potential applications in engineering and materials science. Burgeoning evidence demonstrates that carbon nanotubes and asbestos share comparable physical properties. Therefore carbon nanotubes might display toxic effects and the extent of the toxicity is more specifically directed to lung and pleura. These effects are related to properties of carbon nanotubes, such as their structure, length, aspects ratio, surface area, degree of aggregation, extent of oxidation, bound functional group, method of manufacturing, concentration and dose. At the present there is no global agreement about the risk of carbon nanotubes on human health and in particular on their transformation capacity. Safety concerns regarding carbon nanotubes can be ameliorated. In this context, it is important to put the known hazards of carbon nanotubes into perspective. Here is presented an overview about toxicity issues in the application of carbon nanotubes to biological systems, taking into consideration the already known asbestos-induced mechanisms of biological damages.

Literatur

  1. 1

    M. F. Stanton, M. Layard, A. Tegeris, E. Miller, M. May, E. Morgan, and A. Smith, JNCI, J. Natl. Cancer Inst. 67, 965 (1981).

    CAS  Google Scholar 

  2. 2

    K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander, Toxicol. Sci. 92, 5 (2006).

    CAS  Google Scholar 

  3. 3

    N. H. Heintz, Y. M. Janssen-Heininger, and B. T. Mossman, Am. J. Respir. Cell Mol. Biol. 42, 133 (2010).

    CAS  Google Scholar 

  4. 4

    S. Iijima, Nature (London) 354, 56 (1991).

    CAS  Google Scholar 

  5. 5

    C. Buzea, I. I. Pacheco, and K. Robbie, Biointerphases 2, MR17 (2007).

    Google Scholar 

  6. 6

    W. Krätschmer, K. Fostiropoulos, and D. R. Huffman, Chem. Phys. Lett. 170, 167 (1990).

    Google Scholar 

  7. 7

    S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).

    CAS  Google Scholar 

  8. 8

    H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, Science 296, 884 (2002).

    CAS  Google Scholar 

  9. 9

    V. Derycke, Nano Lett. 1, 453 (2001).

    CAS  Google Scholar 

  10. 10

    J. Seeharamappa, S. Yellappa, and F. D'Souza, Electrochem. Soc. Interface (2006).

    Google Scholar 

  11. 11

    A. Thess et al., Science 273, 483 (1996).

    CAS  Google Scholar 

  12. 12

    J. G. García-Céspedes, R. Rubio-Roy, M. C. Polo, E. Pascual, U. Andujar, and E. Bertran, Diamond Relat. Mater. 16, 1131 (2007).

    Google Scholar 

  13. 13

    H. X. Luo, Z. J. Shi, N. Q. Li, Z. N. Gu, and Q. K. Zhuang, Anal. Chem. 73, 915 (2001).

    CAS  Google Scholar 

  14. 14

    K. Donaldson, V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm, Occup. Environ. Med. 61, 727 (2004).

    CAS  Google Scholar 

  15. 15

    D. R. Johnson, M. M. Methner, A. J. Kennedy, and J. A. Steevens, Environ. Health Perspect. 118, 49 (2010).

    CAS  Google Scholar 

  16. 16

    ECHA (European Chemicals Agency), REACH Guidance on Information Requirements and Chemicals Safety Assessment (European Chemicals Agency, 2008).

    Google Scholar 

  17. 17

    CHENIR (Scientific Committee on Emerging and Newly Identified Health Risks), Risk assessment of products of nanotechnologies (opinion adopted 19 January 2009).

    Google Scholar 

  18. 18

    X. Deng, G. Jia, H. Wang, H. Sun, X. Wang, S. Yang T. Wang, and Y. Liu, Carbon 45, 1419 (2007).

    CAS  Google Scholar 

  19. 19

    J. Muller et al., Toxicol. Appl. Pharmacol. 207, 221 (2005).

    CAS  Google Scholar 

  20. 20

    D. Elgrabli, S. Abella-Gallart, F. Robidel, F. Rogerieux, J. Boczkowski, and G. Lacroix, Toxicology 253, 131 (2008).

    CAS  Google Scholar 

  21. 21

    A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, and V. Castranova, J. Toxicol. Environ. Health A 67, 87 (2004).

    CAS  Google Scholar 

  22. 22

    J. H. Han et al., Inhalation Toxicol. 20, 741 (2008).

    Google Scholar 

  23. 23

    D. Bello, A. J. Hart, K. Ahn, M. Hallock, N. Yamamoto, E. J. Garcia, M. J. Ellenbecker, and B. L. Wardle, Carbon 46, 974 (2008).

    CAS  Google Scholar 

  24. 24

    D. Bello, B. L. Wardle, N. Yamamoto, R. G. deVilloria, E. J. Garcia, A. J. Hart, K. Ahn, M. J. Ellenbecker, and M. Hallock, J. Nanopart. Res. 11, 231 (2009).

    CAS  Google Scholar 

  25. 25

    B. Yeganeh, C. M. Kull, M. S. Hull, and I. C. Marr, Environ. Sci. Technol. 42, 4600 (2008).

    CAS  Google Scholar 

  26. 26

    M. Methner, L. Hodson, and C. Geraci, J Occup Environ Hyg Part A 7, 127 (2010).

    CAS  Google Scholar 

  27. 27

    M. Methner, L. Hodson, A. Dames, and C. Geraci, J Occup Enciron Hyg Part B (2010).

    Google Scholar 

  28. 28

    M. Takaya, F. Serita, M. Ono-Ogasawara, Y. Shinohara, H. Saito, and S. Koda, J. Occup. Health (Lond.) 52, 182 (2010).

    CAS  Google Scholar 

  29. 29

    A. R. Murray, E. Kisin, S. S. Leonard, S. H. Young, C. Kommineni, V. E. Kagan, V. Castranova, and A. A. Shvedova, Toxicology 257, 161 (2009).

    CAS  Google Scholar 

  30. 30

    C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, Crit. Rev. Toxicol. 36, 189 (2006).

    CAS  Google Scholar 

  31. 31

    L. E. Murr, I. J. Band, E. V. Esquivel, P. A. Guerrero, and D. A. Lopez, J. Nanopart. Res. 6, 241 (2004).

    CAS  Google Scholar 

  32. 32

    L. E. Murr, I. J. Band, D. A. Lopez, P. A. Guerreo, E. V. Esquivel, A. R. Choudhuri, M. Subramanya, M. Morandi, and A. Holian, J. Mater. Sci. 39, 2199 (2004).

    CAS  Google Scholar 

  33. 33

    M. Wu, R. E. Gordon, R. Herbert, M. Padilla, J. Moline, D. Mendelson, V. Little, W. D. Travis, and J. Gil, Environ. Health Perspect. 118, 499 (2010).

    CAS  Google Scholar 

  34. 34

    N. C. Mueller and B. Nowack, Environ. Sci. Technol. 42, 4447 (2008).

    CAS  Google Scholar 

  35. 35

    J. E. Riviere, WIREs Nanomed Nanobiotechnol 1, 26 (2009).

    CAS  Google Scholar 

  36. 36

    K. Donaldson and C. L. Tran, Mutat Res. 553, 5 (2004).

    CAS  Google Scholar 

  37. 37

    H. Ellinger-Ziegelbauer and J. Pauluhn, Toxicology 266, 16 (2009).

    CAS  Google Scholar 

  38. 38

    J. K. Folkmann, L. Risom, N. R. Jacobsen, H. Wallin, S. Loft, and P. Moller, Environ. Health Perspect. 117, 703 (2009).

    CAS  Google Scholar 

  39. 39

    P. Rajagopalan, F. Wudl, R. F. Schinazi, and F. D. Boudinot, Antimicrob. Agents Chemother. 40, 2262 (1996).

    CAS  Google Scholar 

  40. 40

    I. Qingnuan, X. Yan, Z. Xiaodong, L. Ruili, and D. Qieqie, Nucl. Med. Biol. 29, 707 (2002).

    Google Scholar 

  41. 41

    R. Bullard-Dillard, K. E. Creek, W. A. Scrivens, and J. M. Tour, Bioorg. Chem. 24, 376 (1996).

    CAS  Google Scholar 

  42. 42

    S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, and S. Kananishi, Chem. Biol. 2, 385 (1995).

    CAS  Google Scholar 

  43. 43

    H. Wang, J. Nanosci. Nanotechnol. 4, 1019 (2004).

    CAS  Google Scholar 

  44. 44

    R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, and K. Kostarelos, Proc. Natl. Acad. Sci. U.S.A. 103, 3357 (2006).

    CAS  Google Scholar 

  45. 45

    J. Kolosnjaj-Tabi, K. B. Hartman, S. Boudjemaa, J. S. Ananta, G. Morgant, H. Szwarc, L. J. Wilson, and E. Moussa, ACS Nano 4, 1481 (2010).

    CAS  Google Scholar 

  46. 46

    E. J. Park, W. S. Cho, J. Jeong, J. Yi, K. Choi, and K. Park, Toxicology 259, 113 (2009).

    CAS  Google Scholar 

  47. 47

    D. Crouzier, S. Follot, E. Gentilhomme, E. Flahaut, R. Arnaud, V. Dabouis, C. Castellarin, and J. C. Debouzy, Toxicology 272, 39 (2010).

    CAS  Google Scholar 

  48. 48

    D. W. Porter et al., Toxicology 269, 136 (2010).

    CAS  Google Scholar 

  49. 49

    L. A. Mitchell, J. Gao, R. V. Wal, A. Gigliotti, S. W. Burchiel, and J. D. McDonald, Toxicol. Sci. 100, 203 (2007).

    CAS  Google Scholar 

  50. 50

    L. Ma-Hock et al., Toxicol. Sci. 112, 468 (2009).

    CAS  Google Scholar 

  51. 51

    I. Pauhulun, Toxicol. Sci. 113, 226 (2010).

    Google Scholar 

  52. 52

    M. Pacurari et al., Environ. Health Perspect. 116, 1211 (2008).

    CAS  Google Scholar 

  53. 53

    G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo, Environ. Sci. Technol. 39, 1378 (2005).

    CAS  Google Scholar 

  54. 54

    C. Salvador-Morale, P. Townsend, E. Flahaut, C. Vénien-Bryan, A. Vlandas, M. L. H. Green, and R. B. Sim, Carbon 45, 607 (2007).

    Google Scholar 

  55. 55

    H. K. Lindberg, G. C. Falk, S. Suhonen, M. Vippola, E. Vanhala, J. Catalan, and H. Norppa, Toxicol. Lett. 186, 166 (2009).

    CAS  Google Scholar 

  56. 56

    S. T. Yang, X. Wang, G. Jia, Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, and Y. Liu, Toxicol. Lett. 181, 182 (2008).

    CAS  Google Scholar 

  57. 57

    K. Ashberger, H. J. Johnston, V. Stone, R. J. Aitken, S. M. Hankin, S. A. Peters, T. C. Lang, and F. M. Christensen, Clin Rev Toxicol 40, 705 (2010).

    Google Scholar 

  58. 58

    J. Cveticanin, G. Joksic, A. Leskovac, S. Petrovic, A. V. Sobot, and A. Neskovic, Nanotechnology 21, 015102 (2010).

    Google Scholar 

  59. 59

    N. Singh, B. Manshian, G. J. S. Jenkins, S. M. Griffiths, P. M. Williams, T. G. G. Maffeis, C. J. Wright, and S. H. Doak, Biomaterials 30, 3891 (2009).

    CAS  Google Scholar 

  60. 60

    D. M. Brown, M. R. Wilson, W. MacNee, V. Stone, and K. Donaldson, Toxicol. Appl. Pharmacol. 175, 191 (2001).

    CAS  Google Scholar 

  61. 61

    T. H. Zastawny, S. A. Altman, L. Randers-Eichhorn, R. Madurawe, J. A. Lumpkin, M. Dazdaroglu, and G. Rao, Free Radic Biol. Med. 18, 1013 (1995).

    CAS  Google Scholar 

  62. 62

    K. Szendi and C. Varga, Anticancer Res. 28, 349 (2008).

    CAS  Google Scholar 

  63. 63

    N. R. Jacobsen et al., Environ. Mol. Mutagen. 49, 476 (2008).

    CAS  Google Scholar 

  64. 64

    Z. Li, T. Hulderman, R. Salmen, R. Chapman, S. S. Leonard, S.-H. Young, A. Shvedova, M. I. Luster, and P. P. Simeonova, Environ. Health Perspect. 115, 377 (2007).

    CAS  Google Scholar 

  65. 65

    A. A. Shvedova et al., Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L552 (2008).

    CAS  Google Scholar 

  66. 66

    J. S. Kim, K. S. Song, H. J. Joo, J. H. Lee, and I. J. Yu, J. Toxicol. Environ. Health 73, 21 (2010).

    Google Scholar 

  67. 67

    W. G. Kreyling, in Particle Toxicology, edited by K. Donaldson and P. Borm (CRC, Boca Raton, FL, 2007) Chap. 3, pp. 47–74.

    Google Scholar 

  68. 68

    W. H. Walton, in Mineral Fibers and Health, edited by D. Liddell and K. Miller (CRC, Boca Raton, FL, 1991), Chap. 5.

    Google Scholar 

  69. 69

    H. Muhle, B. Bellmann, and O. Creutzemberg, in Toxic and Carcinogenic Effects of Solid Particles in the Respiratory Tract, edited by U. Mohr, D. Dungworth, and G. Oberdorster (ILSI, Washington, DC, 1994), pp. 29–41.

    Google Scholar 

  70. 70

    M. F. Stanton, Biological Effects of Asbestos, WHO IARC (1973), pp. 289–294.

    Google Scholar 

  71. 71

    K. Donaldson, F. A. Murphy, R. Duffin, and C. A. Poland, Particle Fibres Toxicol 7, 5 (2010).

    Google Scholar 

  72. 73

    H. Nagai and S. Toyokuni, Arch. Biochem. Biophys. 1, 502 (2010).

    Google Scholar 

  73. 74

    C. A. Poland et al., Nat. Nanotechnol. 3, 423 (2008).

    CAS  Google Scholar 

  74. 75

    A. Takagi, A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, and J. Kanno, J. Toxicol. Sci. 33, 105 (2008).

    CAS  Google Scholar 

  75. 76

    L. D. Maxim and E. E. McCornell, Regul. Toxicol. Pharmacol. 33, 319 (2001).

    CAS  Google Scholar 

  76. 77

    C. Varga and K. Szendi, In Vivo 24, 82 (2010).

    Google Scholar 

  77. 78

    J. P. Ryman-Rasmussen et al., Nat. Nanotechnol. 4, 747 (2009).

    CAS  Google Scholar 

  78. 79

    A. Mishra, J. Y. Liu, A. R. Brody, and G. F. Morris, Am. J. Respir. Cell Mol. Biol. 16, 497 (1997).

    Google Scholar 

  79. 80

    L. Zhu, D. W. Chang, L. Dai, and Y. Hong, Nano Lett. 7, 3592 (2007).

    CAS  Google Scholar 

  80. 81

    K. Pelin, A. Hirvonen, and K. Linnainmaa, Carcinogenesis 15, 2673 (1994).

    CAS  Google Scholar 

  81. 82

    J. C. Wagner, C. A. Sleggs, and P. Marchand, Br. J. Ind. Med. 17, 260 (1960).

    CAS  Google Scholar 

  82. 83

    M. Carbone, H. I. Pass, P. Rizzo, M. Marinetti, M. Di Muzio, D. J. Mew, A. S. Levine, and A. Procopio, Oncogene 9, 1781 (1994).

    CAS  Google Scholar 

  83. 84

    N. Shivapurkar et al., Lancet 359, 851 (2002).

    CAS  Google Scholar 

  84. 85

    D. S. MacLachlan, Anticancer Res. 22, 3495 (2002).

    Google Scholar 

  85. 86

    P. Sebastien, X. Janson, A. audichet, A. Hirsch, and J. Bignon, IARC Sci. Publ. 30, 237 (1980).

    CAS  Google Scholar 

  86. 87

    J. G. Ault, R. W. Cole, C. G. Jensen, L. C. Jensen, L. A. Bachert, and C. L. Rieder, Cancer Res. 55, 792 (1995).

    CAS  Google Scholar 

  87. 88

    B. R. Balsara, D. W. Bell, G. Sonoda, A. De Rienzo, S. du Manoir, S. C. Jhanwar, and J. R. Testa, Cancer Res. 59, 450 (1999).

    CAS  Google Scholar 

  88. 89

    A. M. Björkqvist, L. Tammilehto, S. Anttila, K. Mattson, and S. Knuutila, Br. J. Cancer 75, 523 (1997).

    Google Scholar 

  89. 90

    D. W. Kamp, V. A. Israbian, S. E. Preusen, C. X. Zhang, and S. A. Weitzman, Am. J. Physiol. 268, 471 (1995).

    Google Scholar 

  90. 91

    C. L. Zanella, J. Posada, T. R. Tritton, and B. T. Mossman, Cancer Res. 56, 5334 (1996).

    CAS  Google Scholar 

  91. 92

    Y. M. Janssen, N. H. Heintz, and B. T. Mossman, Cancer Res. 55, 2085 (1995).

    CAS  Google Scholar 

  92. 93

    N. H. Heintz, Y. M. Janssen, and B. T. Mossman, Proc. Natl. Acad. Sci. U.S.A. 90, 3299 (1993).

    CAS  Google Scholar 

  93. 94

    D. Krause and R. van Etten, N. Engl. J. Med. 353, 172 (2005).

    CAS  Google Scholar 

  94. 95

    A. Bardelli et al., Science 300, 949 (2003).

    CAS  Google Scholar 

  95. 96

    Z. Wang et al., Science 304, 1164 (2004).

    CAS  Google Scholar 

  96. 97

    M. Soda et al., Nature (London) 448, 561 (2007).

    CAS  Google Scholar 

  97. 98

    S. Dacic, M. Flanagan, K. Cieply, S. Ramalingam, J. Luketich, C. Belani, and S. A. Yousem, Am. J. Clin. Pathol. 125, 860 (2006).

    CAS  Google Scholar 

  98. 99

    B. Lutterbach, Q. Zeng, L. J. Davis, H. Hatch, G. Hang, N. E. Kohl, J. B. Gibbs, and B. S. Pan, Cancer Res. 67, 2081 (2007).

    CAS  Google Scholar 

  99. 100

    Y. Pignochino et al., Oral Communication at the ERS Annual Meeting, Barcelona, 2010 (unpublished).

    Google Scholar 

  100. 101

    J. C. Pache, Y. M. Janssen, E. S. Walsh, T. R. Quinlan, C. L. Zanella, R. B. Low, D. J. Taatjes, and B. T. Mossman, Am. J. Pathol. 152, 333 (1998).

    CAS  Google Scholar 

  101. 102

    N. E. Hynes and H. A. Lane, Nat. Rev. Cancer 5, 341 (2005).

    CAS  Google Scholar 

  102. 103

    S. Yoon and T. Seger, Growth Factors 24, 21 (2006).

    CAS  Google Scholar 

  103. 104

    R. F. Robledo, S. A. Buder-Hoffmann, A. B. Cummins, E. S. Walsh, D. J. Taatjes, and B. T. Mossman, Am. J. Pathol. 156, 1307 (2000).

    CAS  Google Scholar 

  104. 105

    A. B. Cummins, C. Palmer, B. T. Mossman, and D. J. Taatjes, Am. J. Pathol. 162, 713 (2003).

    CAS  Google Scholar 

  105. 106

    Y. M. Janssen, A. Barchowsky, M. Treadwell, K. E. Driscoll, and B. T. Mossman, Proc. Natl. Acad. Sci. U.S.A. 92, 8458 (1995).

    CAS  Google Scholar 

  106. 107

    Y. M. Janssen, K. E. Driscoll, B. Howard, T. R. Quinlan, M. Treadwell, A. Barchowsky, and B. T. Mossman, Am. J. Pathol. 151, 389 (1997).

    CAS  Google Scholar 

  107. 108

    C. Dostert, V. Pétrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J. Tschopp, Science 320, 674 (2008).

    CAS  Google Scholar 

  108. 109

    W. P. Arend, C. Palmer, and C. Gabay, Immunol. Rev. 223, 20 (2008).

    CAS  Google Scholar 

  109. 110

    Y. M. Janssen-Heininger, I. Macara, and B. T. Mossman, Am. J. Respir. Cell Mol. Biol. 20, 942 (1999).

    CAS  Google Scholar 

  110. 111

    A. Sartore-Bianchi et al., Clin. Cancer Res. 13, 5942 (2007).

    CAS  Google Scholar 

  111. 112

    A. Shukla, M. Stern, K. M. Lounsbury, T. Flanders, and B. T. Mossman, Am. J. Respir. Cell Mol. Biol. 29, 198 (2003).

    CAS  Google Scholar 

  112. 113

    P. P. Simeonov and M. I. Luster, Am. J. Respir. Cell Mol. Biol. 12, 676 (1995).

    Google Scholar 

  113. 114

    S. J. Riedl and Y. Shi, Nat. Rev. Mol. Cell Biol. 5, 897 (2004).

    CAS  Google Scholar 

  114. 115

    D. A. Altomare et al., Oncogene 24, 6080 (2005).

    CAS  Google Scholar 

  115. 116

    M. E. Ramos-Nino, G. Vianale, T. Sabo-Attwood, L. Mutti, C. Porta, N. Heintz, and B. T. Mossman, Mol. Cancer Ther. 4, 835 (2005).

    CAS  Google Scholar 

  116. 117

    S. A. Buder-Hoffmann, A. Shukla, T. F. Barrett, M. B. MacPherson, K. M. Lounsbury, and B. T. Mossman, Am. J. Pathol. 174, 449 (2009).

    CAS  Google Scholar 

  117. 118

    J. G. Edwards, J. McLaren, J. L. Jones, D. A. Waller, and K. J. O'Byrne, Br. J. Cancer 88, 1553 (2003).

    CAS  Google Scholar 

  118. 119

    R. Seljelid and L. T. Busund, Eur. J. Haematol. 52, 1 (1994).

    CAS  Google Scholar 

  119. 120

    R. Masood, A. Kundra, S. Zhu, G. Xia, P. Scalia, D. L. Smith, and P. S. Gill, Int. J. Cancer 104, 603 (2003).

    CAS  Google Scholar 

  120. 121

    R. E. Merritt, R. E. Yamada, N. Wasif, R. G. Crystal, and R. J. Korst, Ann. Thorac. Surg. 78, 1042 (2004).

    Google Scholar 

  121. 122

    J. G. Edwards, D. E. Swinson, J. L. Jones, S. Muller, D. A. Waller, and K. J. O'Byrne, Chest 124, 1916 (2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stellaa, G.M. Carbon nanotubes and pleural damage: Perspectives of nanosafety in the light of asbestos experience. Biointerphases 6, P1–P17 (2011). https://doi.org/10.1116/1.3582324

Download citation