Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Modulation of fibroblast inflammatory response by surface modification of a perfluorinated ionomer

Abstract

An ideal surface for implantable glucose sensors would be able to evade the events leading to chronic inflammation and fibrosis, thereby extending its utility in an in vivo environment. Nafion™, a perfluorinated ionomer, is the membrane material preferred for in situ glucose sensors. Unfortunately, the surface properties of Nafion™ promote random protein adsorption and eventual foreign body encapsulation, thus leading to loss of glucose signal over time. Details of the techniques to render Nafion™ nonprotein fouling are given in a previous article [T. I. Valdes et al., Biomaterials 29, 1356 (2008)]. Once random protein adsorption is prevented, a biologically active peptide can be covalently bonded to the treated Nafion™ to induce cellular adhesion. Cellular responses to these novel decorated Nafion™ surfaces are detailed here, including cell viability, cell spreading, and type I collagen synthesis. Normal human dermal fibroblasts NHDFs) were cultured on control and modified Nafion™ surfaces. Findings indicate that Nafion™ modified with 10% 2-hydroxyethyl methacrylate and 90% tetraglyme created a nonfouling surface that was subsequently decorated with the YRGDS peptide. NHDFs were shown to have exhibited decreased type I collagen production in comparison to NHDF cells on unmodified Nafion™ surfaces. Here, the authors report evidence that proves that optimizing conditions to prevent protein adsorption and enhance cellular adhesion may eliminate fibrous encapsulation of an implant.

References

  1. 1

    G. Y. Daniloff, Diabetes Technol. Ther. 1, 261 (1999).

    CAS  Article  Google Scholar 

  2. 2

    A. Heller, Annu. Rev. Biomed. Eng. 1, 153 (1999).

    CAS  Article  Google Scholar 

  3. 3

    T. D. Chung, R. A. Jeong, S. K. Kang, and H. C. Kim, Biosens. Bioelectron. 16, 1079 (2001).

    CAS  Article  Google Scholar 

  4. 4

    H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H. C. Kim, Biosens. Bioelectron. 17, 251 (2002).

    CAS  Article  Google Scholar 

  5. 5

    S. K. Kang, R. A. Jeong, S. Park, T. D. Chung, and H. C. Kim, Anal. Sci. 19, 1481 (2003).

    CAS  Article  Google Scholar 

  6. 6

    J. Wang and M. Musameh, Anal. Chem. 75, 2075 (2003).

    CAS  Article  Google Scholar 

  7. 7

    C. M. Li and C. S. Cha, Front. Biosci. 9, 3479 (2004).

    CAS  Article  Google Scholar 

  8. 8

    H. Yang, S. K. Kang, C. A. Choi, H. Kim, D. H. Shin, Y. S. Kim, and Y. T. Kim, Lab Chip 4, 42 (2004).

    CAS  Article  Google Scholar 

  9. 9

    M. Hashimoto, N. Sakamoto, S. Upadhyay, J. Fukuda, and H. Suzuki, Biosens. Bioelectron. 22, 3154 (2007).

    CAS  Article  Google Scholar 

  10. 10

    M. Chu et al., Biomed. Microdevices 11, 837 (2009).

    CAS  Article  Google Scholar 

  11. 11

    G. S. Cha, D. Liu, and M. E. Meyerholl, Anal. Chem. 63, 1666 (1991).

    CAS  Article  Google Scholar 

  12. 12

    J. Fei, Y. Wu, X. Ji, J. Wang, S. Hu, and Z. Gao, Anal. Sci. 19, 1259 (2003).

    CAS  Article  Google Scholar 

  13. 13

    W. R. Heineman, Appl. Biochem. Biotechnol. 41, 87 (1993).

    CAS  Article  Google Scholar 

  14. 14

    L. Lin, L. L. Xiao, S. Huang, L. Zhao, J. S. Cui, X. H. Wang, and X. Chen, Biosens. Bioelectron. 21, 1703 (2006).

    CAS  Article  Google Scholar 

  15. 15

    K. Tohda and M. Gratzl, Anal. Sci. 22, 383 (2006).

    CAS  Article  Google Scholar 

  16. 16

    S. Yang, P. Atanasov, and E. Wilkins, Biomed. Instrum. Technol. 29, 125 (1995).

    CAS  Google Scholar 

  17. 17

    B. Yu, Y. Moussy, and F. Moussy, Front. Biosci. 10, 512 (2005).

    CAS  Article  Google Scholar 

  18. 18

    R. Ballerstadt, C. Lvans, A. Gowda, and R. McNichols, J. Diabetes Sci. Technol. 1, 384 (2007).

    Google Scholar 

  19. 19

    M. M. Barsan and C. M. Brett, Bioelectrochemistry 76, 135 (2009).

    CAS  Article  Google Scholar 

  20. 20

    S. Eisele, H. P. Ammon, R. Kindervater, A. Grobe, and W. Gopel, Biosens. Bioelectron. 9, 119 (1994).

    CAS  Article  Google Scholar 

  21. 21

    S. Jawaheer, S. F. White, S. D. Rughooputh, and D. C. Cullen, Biosens. Bioelectron. 18, 1429 (2003).

    CAS  Article  Google Scholar 

  22. 22

    S. K. Jung, W. Gorski, C. A. Aspinwall, L. M. Kauri, and R. T. Kennedy, Anal. Chem. 71, 3642 (1999).

    CAS  Article  Google Scholar 

  23. 23

    T. Kawanishi, M. A. Romey, R. C. Zhu, M. Z. Holody, and S. Shinkai, J. Fluoresc. 14, 499 (2004).

    CAS  Article  Google Scholar 

  24. 24

    G. Kenausis, Q. Chen, and A. Heller, Anal. Chem. 69, 1054 (1997).

    CAS  Article  Google Scholar 

  25. 25

    S. Kim, T. Rahman, L. R. Senesac, B. H. Davison, and T. Thundat, Scanning 31, 204 (2009).

    CAS  Google Scholar 

  26. 26

    H. Tatsumi, H. Katano, and T. Ikeda, Anal. Biochem. 357, 257 (2006).

    CAS  Article  Google Scholar 

  27. 27

    K. Tohda and M. Gratzl, Anal. Sci. 22, 937 (2006).

    CAS  Article  Google Scholar 

  28. 28

    W. K. Ward, L. B. Jansen, L. Anderson, G. Reach, J. C. Klein, and G. S. Wilson, Biosens. Bioelectron. 17, 181 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Y. Zhang, Y. Hu, G. S. Wilson, D. Moatti-Sirat, V. Poitout, and G. Reach, Anal. Chem. 66, 1183 (1994).

    CAS  Article  Google Scholar 

  30. 30

    S. K. Jung and G. S. Wilson, Anal. Chem. 68, 591 (1996).

    CAS  Article  Google Scholar 

  31. 31

    W. Kerner, M. Kiwit, B. Linke, F. S. Keck, H. Zier, and E. F. Pleiffer, Biosens. Bioelectron. 8, 473 (1993).

    CAS  Article  Google Scholar 

  32. 32

    M. Koster, C. G. Gliesche, and R. Wardenga, Appl. Lnviron. Microbiol. 72, 7063 (2006).

    Article  CAS  Google Scholar 

  33. 33

    B. K. Oh, M. L. Robbins, B. J. Nablo, and M. H. Schoennsch, Biosens. Bioelectron. 21, 749 (2005).

    CAS  Article  Google Scholar 

  34. 34

    S. J. Updike, M. C. Shults, R. K. Rhodes, B. J. Gilligan, J. O. Luebow, and D. von Heimburg, ASAIO J. 40, 157 (1994).

    CAS  Google Scholar 

  35. 35

    C. Wang, B. Yu, B. Knudsen, J. Harmon, F. Moussy, and Y. Moussy, Biomacromolecules 9, 561 (2008).

    CAS  Article  Google Scholar 

  36. 36

    W. K. Ward, E. S. Wilgus, and J. E. Troupe, Biosens. Bioelectron. 9, 423 (1994).

    CAS  Article  Google Scholar 

  37. 37

    S. Yang, P. Atanasov, and E. Wilkins, Ann. Biomed. Eng. 23, 833 (1995).

    CAS  Article  Google Scholar 

  38. 38

    Y. Yang, S. F. Zhang, M. A. Kingston, G. Jones, G. Wright, and S. A. Spencer, Biosens. Bioelectron. 15, 221 (2000).

    CAS  Article  Google Scholar 

  39. 39

    B. Yu, Y. Ju, L. West, Y. Moussy, and F. Moussy, Diabetes Technol. Ther. 9, 265 (2007).

    CAS  Article  Google Scholar 

  40. 40

    B. Yu, N. Long, Y. Moussy, and F. Moussy, Biosens. Bioelectron. 21, 2275 (2006).

    CAS  Article  Google Scholar 

  41. 41

    M. Ziegler, M. Schlosser, P. Abel, and B. Ziegler, Biomaterials 15, 859 (1994).

    CAS  Article  Google Scholar 

  42. 42

    M. Florescu and A. B. CM, Talanta 65, 306 (2005).

    CAS  Article  Google Scholar 

  43. 43

    F. Moussy, S. Jakeway, D. J. Harrison, and R. V. Rajotte, Anal. Chem. 66, 3882 (1994).

    CAS  Article  Google Scholar 

  44. 44

    T.I. Valdes, W. Ciridon, B. D. Ratner, and J. D. Bryers, Biomaterials 29, 1356 (2008).

    CAS  Article  Google Scholar 

  45. 45

    X. Zhao, H. Jia, J. Kim, and P. Wang, Biotechnol. Bioeng. 104, 1068 (2009).

    CAS  Article  Google Scholar 

  46. 46

    L. Yang, X. Ren, F. Tang, and L. Zhang, Biosens. Bioelectron. 25, 889 (2009).

    Article  CAS  Google Scholar 

  47. 47

    D. Wen, X. Zou, Y. Liu, L. Shang, and S. Dong, Talanta 79, 1233 (2009).

    CAS  Article  Google Scholar 

  48. 48

    T. F. Tseng, Y. L. Yang, M. C. Chuang, S. L. Lou, M. Galik, G. U. Flechsig, and J. Wang, Electrochem. Commun. 11, 1819 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Y. Tan, W. Deng, B. Ge, Q. Xie, J. Huang, and S. Yao, Biosens. Bioelectron. 24, 2225 (2009).

    CAS  Article  Google Scholar 

  50. 50

    R. B. Rakhi, K. Sethupathi, and S. Ramaprabhu, J. Phys. Chem. B 113, 3190 (2009).

    CAS  Article  Google Scholar 

  51. 51

    B. Qiu, Z. Lin, J. Wang, Z. Chen, J. Chen, and G. Chen, Talanta 78, 76 (2009).

    CAS  Article  Google Scholar 

  52. 52

    D. R. Jeykumari and S. S. Narayanan, J. Nanosci. Nanotechnol. 9, 5411 (2009).

    CAS  Article  Google Scholar 

  53. 53

    A. I. Gopalan, K. P. Lee, D. Ragupathy, S. H. Lee, and J. W. Lee, Biomaterials 30, 5999 (2009).

    CAS  Article  Google Scholar 

  54. 54

    H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, Biosens. Bioelectron. 24, 1417 (2009).

    CAS  Article  Google Scholar 

  55. 55

    X. M. Chen, Z. M. Cai, Z. J. Lin, T. T. Jia, H. Z. Liu, Y. Q. Jiang, and X. Chen, Biosens. Bioelectron. 24, 3475 (2009).

    CAS  Article  Google Scholar 

  56. 56

    M. L. Antonelli, F. Arduini, A. Lagana, D. Moscone, and V. Siliprandi, Biosens. Bioelectron. 24, 1382 (2009).

    CAS  Article  Google Scholar 

  57. 57

    Y. Zou, C. Xiang, L. X. Sun, and F. Xu, Biosens. Bioelectron. 23, 1010 (2008).

    CAS  Article  Google Scholar 

  58. 58

    M. Zhou, L. Shang, B. Li, L. Huang, and S. Dong, Biosens. Bioelectron. 24, 442 (2008).

    CAS  Article  Google Scholar 

  59. 59

    J. Yu, D. Yu, T. Zhao, and B. Zeng, Talanta 74, 1586 (2008).

    CAS  Article  Google Scholar 

  60. 60

    S. Suganuma, K. Nakajima, M. Kitano, D. Yamagucm, H. Kato, S. Hayashi, and M. Hara, J. Am. Chem. Soc. 130, 12787 (2008).

    CAS  Article  Google Scholar 

  61. 61

    D. R. Shobha Jeykumari and S. Sriman Narayanan, Biosens. Bioelectron. 23, 1404 (2008).

    CAS  Article  Google Scholar 

  62. 62

    K. M. Manesh, H. T. Kim, P. Santhosh, A. I. Gopalan, and K. P. Lee, Biosens. Bioelectron. 23, 771 (2008).

    CAS  Article  Google Scholar 

  63. 63

    J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, ACS Nano 2, 1825 (2008).

    CAS  Article  Google Scholar 

  64. 64

    X. Liu, L. Shi, W. Niu, H. Li, and G. Xu, Biosens. Bioelectron. 23, 1887 (2008).

    CAS  Article  Google Scholar 

  65. 65

    W. Z. Jia, Y. L. Hu, Y. Y. Song, K. Wang, and X. H. Xia, Biosens. Bioelectron. 23, 892 (2008).

    CAS  Article  Google Scholar 

  66. 66

    D. R. Jeykumari and S. S. Narayanan, Biosens. Bioelectron. 23, 1686 (2008).

    CAS  Article  Google Scholar 

  67. 67

    J. P. Hervás Pérez, E. López-Cabarcos, and B. López-Ruiz, Talanta {75}, 1151 (2008).

    Article  CAS  Google Scholar 

  68. 68

    B. H. Chai, J. M. Zheng, Q. Zhao, and G. H. Pollack, J. Phys. Chem. A 112, 2242 (2008).

    CAS  Article  Google Scholar 

  69. 69

    Y. Zou, L. X. Sun, and F. Xu, Biosens. Bioelectron. 22, 2669 (2007).

    CAS  Article  Google Scholar 

  70. 70

    Z. W. Zhao, X. J. Chen, B. K. Tay, J. S. Chen, Z. J. Han, and K. A. Khor, Biosens. Bioelectron. 23, 135 (2007).

    CAS  Article  Google Scholar 

  71. 71

    N. Zhang, T. Wilkop, S. Lee, and Q. Cheng, Analyst (Cambridge, U.K.) 132, 164 (2007).

    CAS  Article  Google Scholar 

  72. 72

    M. Zhang, C. Mullens, and W. Gorski, Anal. Chem. 79, 2446 (2007).

    CAS  Article  Google Scholar 

  73. 73

    Y. L. Yang, T. F. Tseng, and S. L. Lou, Conf. Proc. IEEE Eng. Med. Bio. Soc. 2007, 6625 (2007).

    Google Scholar 

  74. 74

    Y. Yan, L. Su, and L. Mao, J. Nanosci. Nanotechnol. 7, 1625 (2007).

    CAS  Article  Google Scholar 

  75. 75

    L. Wu, X. Zhang, and H. Ju, Biosens. Bioelectron. 23, 479 (2007).

    Article  CAS  Google Scholar 

  76. 76

    Y. C. Tsai and H. Y. Chien, J. Nanosci. Nanotechnol. 7, 1611 (2007).

    CAS  Article  Google Scholar 

  77. 77

    L. Q. Kong, C. Yang, Q. Y. Qian, and X. H. Xia, Talanta 72, 819 (2007).

    Article  CAS  Google Scholar 

  78. 78

    G. A. Rivas, S. A. Miscoria, J. Desbrieres, and G. D. Barrera, Talanta 71, 270 (2007).

    CAS  Article  Google Scholar 

  79. 79

    R. Maalouf, H. Chebib, Y. Saikali, O. Vittori, M. Sigaud, and N. Jaffrezic-Renault, Biosens. Bioelectron. 22, 2682 (2007).

    CAS  Article  Google Scholar 

  80. 80

    Q. Liu, X. Lu, J. Li, and X. Yao, Biosens. Bioelectron. 22, 3203 (2007).

    CAS  Article  Google Scholar 

  81. 81

    C. H. Lee, S. C. Wang, C. J. Yuan, M. F. Wen, and K. S. Chang, Biosens. Bioelectron. 22, 877 (2007).

    CAS  Article  Google Scholar 

  82. 82

    X. Kang, Z. Mai, X. Zou, P. Cai, and J. Mo, Anal. Biochem. 363, 143 (2007).

    CAS  Article  Google Scholar 

  83. 83

    H. F. Cui, J. S. Ye, W. D. Zhang, C. M. Li, J. H. Luong, and F. S. Sheu, Anal. Chim. Acta 594, 175 (2007).

    CAS  Article  Google Scholar 

  84. 84

    X. Chu, D. Duan, G. Shen, and R. Yu, Talanta 71, 2040 (2007).

    CAS  Article  Google Scholar 

  85. 85

    X. Chen, X. Yan, K. A. Khor, and B. K. Tay, Biosens. Bioelectron. 22, 3256 (2007).

    CAS  Article  Google Scholar 

  86. 86

    F. Ahmad, A. Christenson, M. Bainbridge, A. P. Yusof, and S. Ab Ghani, Biosens. Bioelectron. 22, 1625 (2007).

    CAS  Article  Google Scholar 

  87. 87

    S. Zhao, K. Zhang, Y. Bai, W. Yang, and C. Sun, Bioelectrochemistry 69, 158 (2006).

    CAS  Article  Google Scholar 

  88. 88

    Y. Xian, Y. Hu, F. Liu, H. Wang, and L. Jin, Biosens. Bioelectron. 21, 1996 (2006).

    CAS  Article  Google Scholar 

  89. 89

    O. M. Schuvailo, O. O. Soldatkin, A. Lefebvre, R. Cespuglio, and A. P. Soldatkin, Anal. Chim. Acta 573-574, 110 (2006).

    CAS  Article  Google Scholar 

  90. 90

    S. A. Miscoria, J. Desbrieres, G. D. Barrera, P. Labbe, and G. A. Rivas, Anal. Chim. Acta 578, 137 (2006).

    CAS  Article  Google Scholar 

  91. 91

    T. Matsumoto, S. Saito, and S. Ikeda, J. Biotechnol. 122, 267 (2006).

    CAS  Article  Google Scholar 

  92. 92

    M. S. Lopez, D. Mecerreyes, E. Lopez-Cabarcos, and B. Lopez-Ruiz, Biosens. Bioelectron. 21, 2320 (2006).

    Article  CAS  Google Scholar 

  93. 93

    A. Heller, Anal. Bioanal. Chem. 385, 469 (2006).

    CAS  Article  Google Scholar 

  94. 94

    R. F. Diegelmann and M. C. Evans, Front. Biosci. 9, 283 (2004).

    CAS  Article  Google Scholar 

  95. 95

    A. G. Li, M. J. Quinn, Y. Siddiqui, M. D. Wood, I. F. Federiuk, H. M. Duman, and W. K. Ward, J. Biomed. Mater. Res. Part A 82A, 498 (2007).

    CAS  Article  Google Scholar 

  96. 96

    D. S. Benoit and K. S. Anseth, Acta Biomater. 1, 461 (2005).

    Article  Google Scholar 

  97. 97

    J. Blümmel, N. Perschmann, D. Aydin, J. Drinjakovic, T. Surrey, M. Lopez-Garcia, H. Kessler, and J. P. Spatz, Biomaterials 28, 4739 (2007).

    Article  CAS  Google Scholar 

  98. 98

    H. Chen, M. A. Brook, Y. Chen, and H. Sheardown, J. Biomater. Sci., Polym. Ed. 16, 531 (2005).

    CAS  Article  Google Scholar 

  99. 99

    H. Chen, Z. Zhang, Y. Chen, M. A. Brook, and H. Sheardown, Biomaterials 26, 2391 (2005).

    CAS  Article  Google Scholar 

  100. 100

    A. Porjazoska, O. K. Yilmaz, K. Baysal, M. Cvetkovska, S. Sirvanci, F. Ercan, and B. M. Baysal, J. Biomater. Sci., Polym. Ed. 17, 323 (2006).

    CAS  Article  Google Scholar 

  101. 101

    B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).

    CAS  Article  Google Scholar 

  102. 102

    G. P. Löpez, B. D. Ratner, C. D. Tidwell, C. L. Haycox, R. J. Rapoza, and T. A. Horbett, J. Biomed. Mater. Res. 26, 415 (1992).

    Article  Google Scholar 

  103. 103

    E. E. Johnston, J. D. Bryers, and B. D. Ratner, Langmuir 21, 870 (2005).

    CAS  Article  Google Scholar 

  104. 104

    M. Shen, L. Martinson, M. S. Wagner, D. G. Castner, B. D. Ratner, and T. A. Horbett, J. Biomater. Sci., Polym. Ed. 13, 367 (2002).

    CAS  Article  Google Scholar 

  105. 105

    M. Shen, Y. V. Pan, M. S. Wagner, K. D. Hauch, D. G. Castner, B. D. Ratner, and T. A. Horbett, J. Biomater. Sci., Polym. Ed. 12, 961 (2001).

    CAS  Article  Google Scholar 

  106. 106

    U. Hersel, C. Dahmen, and H. Kessler, Biomaterials 24, 4385 (2003).

    CAS  Article  Google Scholar 

  107. 107

    M. P. Stevens, Free Radical Polymerization Polymer Chemistry: An Introduction (Oxford University Press, New York, 1999), Chap. 6.

    Google Scholar 

  108. 108

    G. P. Lopez, B. D. Ratner, R. Rapoza, and T. A. Horbett, Macromolecules 26, 3247 (1993).

    CAS  Article  Google Scholar 

  109. 109

    M. C. Brown and C. E. Turner, Physiol. Rev. 84, 1315 (2004).

    CAS  Article  Google Scholar 

  110. 110

    D. A. Vesey, C. Cheung, L. Cuttle, Z. Endre, G. Gobe, and D. W. Johnson, J. Lab. Clin. Med. 140, 342 (2002).

    CAS  Article  Google Scholar 

  111. 111

    M. D. Levenson and A. A. Demetrious, in Metabolic Factors Wound Healing: Biochemical and Clinical Aspects, edited by I. K. Cohoen, R. F Diegelmann, and W. J. Lindblad (Saunders, Philadelphia, 1992), pp. 248–273.

    Google Scholar 

  112. 112

    C. Phillips and R. Wenstrup, in Biosynthetic and Genetic Disorders of Collagen Wound Healing: Biochemical and Clinical Aspects, edited by I. K. Cohoen, R. F. Diegelmann, and W J. Lindblad (Saunders, Philadelphia, 1992), pp. 152–176.

    Google Scholar 

  113. 113

    S. P. Massia and J. A. Hubbell, J. Cell Biol. 114, 1089 (1991).

    CAS  Article  Google Scholar 

  114. 114

    N. J. Boudreau and P. L. Jones, Biochem. J. 339, 481 (1999).

    CAS  Article  Google Scholar 

  115. 115

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

    CAS  Article  Google Scholar 

  116. 116

    C. S. Chen, J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber, Biochem. Biophys. Res. Commun. 307, 355 (2003).

    CAS  Article  Google Scholar 

  117. 117

    M. Ivarsson, A. McWhirter, T. K. Borg, and K. Rubin, Matrix Biol. 16, 409 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James D. Bryers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valdes, T.I., Ciridon, W., Ratner, B.D. et al. Modulation of fibroblast inflammatory response by surface modification of a perfluorinated ionomer. Biointerphases 6, 43–53 (2011). https://doi.org/10.1116/1.3583535

Download citation