Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Biomimetic assembly of polyelectrolyte multilayers containing phosvitin monitored with reflectometric interference spectroscopy

Abstract

Coatings of biomaterials or implants that facilitate biomineralization possess a great potential for applications focused to the replacement, augmentation, and regeneration of bone tissue. Biomimetic approaches utilize biomolecules for either templating or supporting the crystallization process. One of these promising biomolecules is phosvitin (PV), an egg yolk protein known to transport and store inorganic phosphates and calcium ions. The incorporation of PV into polyelectrolyte multilayers is favorable due to PVs high degree of phosphorylation and thus a high acidity. Utilizing the reflectometric interference spectroscopy, the adsorption kinetics of this novel polyelectrolyte system composed of poly-L-lysine and the heavily phosphorylated phosvitin were monitored. The results demonstrate an unexpected nonregular growth regime called overshoot. Effective measures of shifting this irregular polyelectrolyte adsorption process back to a regular multilayer growth regime are reported in this paper.

References

  1. 1

    G. Decher, Science 277, 1232 (1997).

    Article  CAS  Google Scholar 

  2. 2

    C. Picart, Curr. Med. Chem. 15, 685 (2008).

    Article  CAS  Google Scholar 

  3. 3

    Z. Y. Lang, Y. Wang, P. Podsiadlo, and N. A. Kotov, Adv. Mater. (Weinheim, Ger.) 18, 3203 (2006).

    Article  Google Scholar 

  4. 4

    T. Boudou, T. Crouzier, K. Ren, G. Blin, and C. Picart, Adv. Mater. (Weinheim, Ger.) 22, 441 (2010).

    Article  CAS  Google Scholar 

  5. 5

    P. Bar-Yosef Ohr, R. Govrin-Lippman, N. Garti, and H. Furedi-Milholer, Cryst. Growth Des. 4, 177 (2004).

    Article  Google Scholar 

  6. 6

    M. D. Sikinc, C. Gergely, R. Elkaim, E. Wachtel, F. J. Cuisinier, and H. Furedi-Milhofer, J. Biomed. Mater. Res. Part A 89, 759 (2008).

    Google Scholar 

  7. 7

    R. N. Finn, Biol. Reprod. 76, 926 (2007).

    Article  CAS  Google Scholar 

  8. 8

    H. Furedi-Milhofer, J. Moradian-Oldak, S. Weiner, A. Veis, K. P. Mintz, and L. Addadi, Connect. Tissue Res. 30, 251 (1994).

    Article  CAS  Google Scholar 

  9. 9

    M. P. Richards, Poult. Sci. 76, 152 (1997).

    CAS  Google Scholar 

  10. 10

    K. Hempel, R. Rosen, D. Becher, K. Buttner, M. Hecker, and E. Z. Ron, Anal. Biochem. 385, 208 (2009).

    Article  CAS  Google Scholar 

  11. 11

    D. Kovacevic, S. Van der Burgh, A. De Keizer, and M. A. C. Stuart, Langmuir 18, 5607 (2002).

    Article  CAS  Google Scholar 

  12. 12

    S. A. Sukhishvih, E. Kharlampieva, and V. Izumrudov, Macromolecules 39, 8873 (2006).

    Article  Google Scholar 

  13. 13

    J. Chluba, J. C. Voegel, G. Decher, P. Brbacher, P. Schaal, and J. Ogier, Biomacromolecules 2, 800 (2001).

    Article  CAS  Google Scholar 

  14. 14

    N. Jessel, F. Atalar, P. Bavalle, J. Mutterer, G. Decher, P. Schaal, J. C. Voegel, and J. Ogier, Adv. Mater. (Weinheim, Ger.) 15, 692 (2003).

    Article  CAS  Google Scholar 

  15. 15

    H. Zhu, J. Ji, and J. Shen, J. Biomater. Sci., Polym. Ed. 16, 761 (2005).

    Article  CAS  Google Scholar 

  16. 16

    F. Boulmedais, B. Frisch, O. Btienne, P. Lavalle, C. Picart, J. Ogier, J. C. Voegel, P. Schaaf, and C. Egles, Biomaterials 25, 2003 (2004).

    Article  CAS  Google Scholar 

  17. 17

    T. J. Halthur and U. M. Elofsson, Langmuir 20, 1739 (2004).

    Article  CAS  Google Scholar 

  18. 18

    C. Porcel, P. Lavalle, V. Ball, G. Decher, B. Senger, J. C. Voegel, and P. Schaaf, Langmuir 22, 4376 (2006).

    Article  CAS  Google Scholar 

  19. 19

    S. Y. Yang, J. D. Mendelsohn, and M. F. Rubner, Biomacromolecules 4, 987 (2003).

    Article  CAS  Google Scholar 

  20. 20

    K. Itoh, S. Tokumi, T. Kimura, and A. Nagase, Langmuir 24, 13426 (2008).

    Article  CAS  Google Scholar 

  21. 21

    C. Picart, R. Elkaim, L. Richert, F. Audoin, Y. Arntz, M. Da Silva Cardoso, P. Schaaf, J. C. Voegel, and B. Frisch, Adv. Funct. Mater. 15, 83 (2005).

    Article  CAS  Google Scholar 

  22. 22

    C. Hänel and G. Gauglitz, Anal. Bioanal. Chem. 372, 91 (2002).

    Article  Google Scholar 

  23. 23

    P. Lavalle, V. Vivet, N. Jessel, G. Decher, J. C. Voegel, P. J. Mesini, and P. Schaaf, Macromolecules 37, 1159 (2004).

    Article  CAS  Google Scholar 

  24. 24

    F. Boulmedais, V Ball, P. Schwinte, B. Frisch, P. Schaaf, and J. C. Voegel, Langmuir 19, 440 (2003).

    Article  CAS  Google Scholar 

  25. 25

    N. Hoda and R. G. Larson, J. Phys. Chem. B 113, 4232 (2009).

    Article  CAS  Google Scholar 

  26. 26

    L. Richert, P. Lavalle, D. Vautier, B. Senger, J. F. Stoltz, P. Schaaf, J. C. Voegel, and C. Picart, Biomacromolecules 3, 1170 (2002).

    Article  CAS  Google Scholar 

  27. 27

    T. Crouzier and C. Picart, Biomacromolecules 10, 433 (2009).

    Article  CAS  Google Scholar 

  28. 28

    L. Jourdainne, S. Lecuyer, Y. Arntz, C. Picart, P. Schaaf, B. Senger, J. C. Voegel, P. Lavalle, and T. Charitat, Langmuir 24, 7842 (2008).

    Article  CAS  Google Scholar 

  29. 29

    D. Kovačevič, S. Van der Burgh, A. De Keizer, and M. A. C. Stuart, J. Phys. Chem. B 107, 7998 (2003).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grohmann, S., Rothe, H., Eisenhuth, S. et al. Biomimetic assembly of polyelectrolyte multilayers containing phosvitin monitored with reflectometric interference spectroscopy. Biointerphases 6, 54–62 (2011). https://doi.org/10.1116/1.3589176

Download citation