Multitechnique study on a recombinantly produced Bacillus halodurans laccase and an S-layer/laccase fusion protein
Biointerphases volume 6, pages 63–72 (2011)
Abstract
Methods for organizing functional materials at the nanometer scale are essential for the development of novel fabrication techniques. One of the most relevant areas of research in nanobiotechnology concerns technological utilization of self-assembly systems, wherein molecules spontaneously associate into reproducible supramolecular structures. For this purpose, the laccase of Bacillus halodurans C-125 was immobilized on the S-layer lattice formed by SbpA of Lysinibacillus sphaericus CCM 2177 either by (i) covalent linkage of the enzyme to the natural protein self-assembly system or (ii) by construction of a fusion protein comprising the S-layer protein and the laccase. The laccase and the S-layer fusion protein were produced heterologously in Escherichia coli. After isolation and purification, the properties of the proteins, as well as the specific activity of the enzyme moiety, were investigated. Interestingly, the S-layer part confers a much higher solubility on the laccase as observed for the sole enzyme. Comparative spectrophotometric measurements of the enzyme activity revealed similar but significantly higher values for rLac and rSbpA/Lac in solution compared to the immobilized state. However, rLac covalently linked to the SbpA monolayer yielded a four to five time higher enzymatic activity than rSbpA/Lac immobilized on a solid support. Combined quartz crystal microbalance with dissipation monitoring (QCM-D) and electrochemical measurements (performed in an electrochemical QCM-D cell) revealed that rLac immobilized on the SbpA lattice had an approximately twofold higher enzymatic activity compared to that obtained with the fusion protein. nt]mis|Authors have contributed equally to this work. nt]mis|Author to whom correspondence should be addressed
References
N. Ilk, P. Kosma, M. Puchberger, E. M. Egelseer, H. F. Mayer, U. B. Sleytr, and M. Sára, J. Bacteriol. 181, 7643 (1999).
U. B. Sleytr, E. M. Egelseer, N. Ilk, P. Messner, C. Schäffer, D. Pum, and B. Schuster, in Prokaryotic Cell Wall Compounds—Structure and Biochemistry, edited by H. König, H. Claus, and A. Varma (Springer, Heidelberg, 2010), p. 459.
U. B. Sleytr, Nature (London) 257, 400 (1975).
C. Schäffer, R. Novotny, S. Küpcü, S. Zayni, A. Scheberl, J. Friedmann, U. B. Sleytr, and P. Messner, Small 3, 1549 (2007).
H. Tschiggerl, A. Breitwieser, G. de Roo, T. Verwoerd, C. Schäffer, and U. B. Sleytr, J. Biotechnol. 133, 403 (2008).
H. Badelt-Lichtblau, B. Kainz, C. Vollenkle, E. M. Egelseer, U. B. Sleytr, D. Pum, and N. Ilk, Bioconjugate Chem. 20, 895 (2009).
N. Ilk, E. M. Egelseer, J. Ferner-Ortner, S. Küpcü, D. Pum, B. Schuster, and U. B. Sleytr, Colloids Surf., A 321, 163 (2008).
N. Ilk, C. Völlenkle, E. M. Egelseer, A. Breitwieser, U. B. Sleytr, and M. Sára, Appl. Environ. Microbiol. 68, 3251 (2002).
M. Sára, D. Pum, C. Huber, N. Ilk, M. Pleschberger, and U. B. Sleytr, in Biological and Pharmaceutical Nanomaterials, edited by C. Kumar (Wiley-VCH, Weinheim, 2006), Vol. 2, p. 219.
U. B. Sleytr, E. M. Egelseer, N. Ilk, D. Pum, and B. Schuster, FEBS J. 274, 323 (2007).
U. B. Sleytr, C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer, FEMS Microbiol. Lett. 267, 131 (2007).
A. Messerschmidt and R. Huber, Eur. J. Biochem. 187, 341 (1990).
A. Potthast, T. Rosenau, and K. Fischer, Holzforschung 55, 47 (2001).
S. RodrÃguez Couto and J. L. Toca Herrera, Biotechnol. Adv. 24, 500 (2006).
H. J. Ruijssenaars and S. Hartmans, Appl. Microbiol. Biotechnol. 65, 177 (2004).
L. Stoica et al., Fuel Cells 9, 53 (2009).
W.-D. Fessner et al., Biocatalysis—From Discovery to Application (Springer, Berlin, 2000), p. 1.
E. Katchalski-Katzir and D. M. Kraemer, J. Mol. Catal., B Enzym. 10, 157 (2000).
M. Mazur, P. Krysinski, A. Michota-Kaminska, J. Bukowska, J. Rogalski, and G. J. Blanchard, Bioelectrochemistry 71, 15 (2007).
R. S. Freire, N. Duran, and L. T. Kubota, Anal. Chim. Acta 463, 229 (2002).
M. L. Mena, V. Carralero, A. González-Cortés, P. Yáñez-Sedeño, and J. M. Pingarrón, Electroanalysis 17, 2147 (2005).
S. RodrÃguez Couto, J. F. Osma, V. Saravia, G. M. Gübitz, and J. L. Toca Herrera, Appl. Catal., A 329, 156 (2007).
Y. Tan, W. Deng, Y. Li, Z. Huang, Y. Meng, Q. Xie, M. Ma, and S. Yao, J. Phys. Chem. B 114, 5016 (2010).
Y. Zhang, G.-M. Zeng, L. Tang, D.-L. Huang, X.-Y. Jiang, and Y.-N. Chen, Biosens. Bioelectron. 22, 2121 (2007).
A. K. Sarma, P. Vatsyayan, P. Goswami, and S. D. Minteer, Biosens. Bioelectron. 24, 2313 (2009).
S. Küpcü, C. Mader, and M. Sára, Biotechnol. Appl. Biochem. 21, 275 (1995).
M. Sára, S. Küpcü, C. Weiner, S. Weigert, and U. B. Sleytr, in Immobilised Macromolecules: Application Potentials, edited by U. B. Sleytr, P. Messner, D. Pum, and M. Sára (Springer, London, 1993), p. 71.
M. Sára and U. B. Sleytr, Appl. Microbiol. Biotechnol. 30, 184 (1989).
D. Pum and U. B. Sleytr, Colloids Surf., A 102, 99 (1995).
L. O. Martins, C. M. Soares, M. M. Pereira, M. Teixeira, T. Costa, G. H. Jones, and A. O. Henriques, J. Biol. Chem. 277, 18849 (2002).
S. Shleev, Y. Wang, M. Gorbacheva, A. Christenson, D. Haltrich, R. Ludwig, T. Ruzgas, and L. Gorton, Electroanalysis 20, 963 (2008).
S. Weigert and M. Sara, J. Membr. Sci. 106, 147 (1995).
F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, Methods Enzymol. 185, 60 (1990).
J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY, 2001), Vol. 3, p. 1.
U. K. Laemmli, Nature 227, 680 (1970).
M. Jarosch, E. M. Egelseer, C. Huber, D. Moll, D. Mattanovich, U. B. Sleytr, and M. Sára, Microbiology 147, 1353 (2001).
E. M. Egelseer, K. Leitner, M. Jarosch, C. Hotzy, S. Zayni, U. B. Sleytr, and M. Sára, J. Bacteriol. 180, 1488 (1998).
W. Ries, C. Hotzy, I. Schocher, U. B. Sleytr, and M. Sára, J. Bacteriol. 179, 3892 (1997).
P. Messner, F. Hollaus, and U. B. Sleytr, Int. J. Syst. Bacteriol. 34, 202 (1984).
V. Morozova, G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, and A. I. Yaropolov, Biochemistry (Mosc.) 72, 1136 (2007).
U. B. Sleytr, M. Sára, Z. Küpcü, and P. Messner, Arch. Microbiol. 146, 19 (1986).
W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).
G. Sauerbrey, Z. Phys. 155, 206 (1959).
F. B. Diniz R. R. Ueta A. M. da C. Pedrosa, M. da C. Areias, V. R. A. Pereira, E. D. Silva, J. G. da Silva, A. G. P. Ferreira, and Y. M. Gomes, Biosens. Bioelectron. 19, 79 (2003).
J. E. B. Randles, Discuss. Faraday Soc. 1, 11 (1947).
E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley-Interscience, Hoboken, NJ, 2005), p. 1.
F. Vianello, A. Cambria, S. Ragusa, M. T. Cambria, L. Zennaro, and A. Rigo, Biosens. Bioelectron. 20, 315 (2004).
S. Wang and D. Du, Sensors 2, 41 (2002).
P. C. Gufler, University of Natural Resources and Applied Life Sciences, 2004.
B. Schuster, D. Pum, and U. B. Sleytr, BioInterphases 3, FA3 (2008).
M. Ozgen, R. N. Reese, A. Z. Tulio, J. C. Scheerens, and A. R. Miller, J. Agric. Food Chem. 54, 1151 (2006).
F. C. d. Abreu, P. A. L. Ferraz, and M. O. F. Goulart, J. Braz. Chem. Soc. 13, 19 (2002).
H.-G. Hong and W. Park, Langmuir 17, 2485 (2001).
M. Klis, J. Rogalski, and R. Bilewicz, Bioelectrochemistry 71, 2 (2007).
B. Schuster and U. B. Sleytr, Soft Matter 5, 334 (2009).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ferner-Ortner-Bleckmann, J., Schrems, A., Ilk, N. et al. Multitechnique study on a recombinantly produced Bacillus halodurans laccase and an S-layer/laccase fusion protein. Biointerphases 6, 63–72 (2011). https://doi.org/10.1116/1.3589284
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1116/1.3589284