Skip to main content

Journal for Biophysical Chemistry

Multitechnique study on a recombinantly produced Bacillus halodurans laccase and an S-layer/laccase fusion protein

Abstract

Methods for organizing functional materials at the nanometer scale are essential for the development of novel fabrication techniques. One of the most relevant areas of research in nanobiotechnology concerns technological utilization of self-assembly systems, wherein molecules spontaneously associate into reproducible supramolecular structures. For this purpose, the laccase of Bacillus halodurans C-125 was immobilized on the S-layer lattice formed by SbpA of Lysinibacillus sphaericus CCM 2177 either by (i) covalent linkage of the enzyme to the natural protein self-assembly system or (ii) by construction of a fusion protein comprising the S-layer protein and the laccase. The laccase and the S-layer fusion protein were produced heterologously in Escherichia coli. After isolation and purification, the properties of the proteins, as well as the specific activity of the enzyme moiety, were investigated. Interestingly, the S-layer part confers a much higher solubility on the laccase as observed for the sole enzyme. Comparative spectrophotometric measurements of the enzyme activity revealed similar but significantly higher values for rLac and rSbpA/Lac in solution compared to the immobilized state. However, rLac covalently linked to the SbpA monolayer yielded a four to five time higher enzymatic activity than rSbpA/Lac immobilized on a solid support. Combined quartz crystal microbalance with dissipation monitoring (QCM-D) and electrochemical measurements (performed in an electrochemical QCM-D cell) revealed that rLac immobilized on the SbpA lattice had an approximately twofold higher enzymatic activity compared to that obtained with the fusion protein. nt]mis|Authors have contributed equally to this work. nt]mis|Author to whom correspondence should be addressed

References

  1. N. Ilk, P. Kosma, M. Puchberger, E. M. Egelseer, H. F. Mayer, U. B. Sleytr, and M. Sára, J. Bacteriol. 181, 7643 (1999).

    CAS  Google Scholar 

  2. U. B. Sleytr, E. M. Egelseer, N. Ilk, P. Messner, C. Schäffer, D. Pum, and B. Schuster, in Prokaryotic Cell Wall Compounds—Structure and Biochemistry, edited by H. König, H. Claus, and A. Varma (Springer, Heidelberg, 2010), p. 459.

    Chapter  Google Scholar 

  3. U. B. Sleytr, Nature (London) 257, 400 (1975).

    Article  CAS  Google Scholar 

  4. C. Schäffer, R. Novotny, S. Küpcü, S. Zayni, A. Scheberl, J. Friedmann, U. B. Sleytr, and P. Messner, Small 3, 1549 (2007).

    Article  Google Scholar 

  5. H. Tschiggerl, A. Breitwieser, G. de Roo, T. Verwoerd, C. Schäffer, and U. B. Sleytr, J. Biotechnol. 133, 403 (2008).

    Article  CAS  Google Scholar 

  6. H. Badelt-Lichtblau, B. Kainz, C. Vollenkle, E. M. Egelseer, U. B. Sleytr, D. Pum, and N. Ilk, Bioconjugate Chem. 20, 895 (2009).

    Article  CAS  Google Scholar 

  7. N. Ilk, E. M. Egelseer, J. Ferner-Ortner, S. Küpcü, D. Pum, B. Schuster, and U. B. Sleytr, Colloids Surf., A 321, 163 (2008).

    Article  CAS  Google Scholar 

  8. N. Ilk, C. Völlenkle, E. M. Egelseer, A. Breitwieser, U. B. Sleytr, and M. Sára, Appl. Environ. Microbiol. 68, 3251 (2002).

    Article  CAS  Google Scholar 

  9. M. Sára, D. Pum, C. Huber, N. Ilk, M. Pleschberger, and U. B. Sleytr, in Biological and Pharmaceutical Nanomaterials, edited by C. Kumar (Wiley-VCH, Weinheim, 2006), Vol. 2, p. 219.

    Google Scholar 

  10. U. B. Sleytr, E. M. Egelseer, N. Ilk, D. Pum, and B. Schuster, FEBS J. 274, 323 (2007).

    Article  CAS  Google Scholar 

  11. U. B. Sleytr, C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer, FEMS Microbiol. Lett. 267, 131 (2007).

    Article  CAS  Google Scholar 

  12. A. Messerschmidt and R. Huber, Eur. J. Biochem. 187, 341 (1990).

    Article  CAS  Google Scholar 

  13. A. Potthast, T. Rosenau, and K. Fischer, Holzforschung 55, 47 (2001).

    CAS  Google Scholar 

  14. S. Rodríguez Couto and J. L. Toca Herrera, Biotechnol. Adv. 24, 500 (2006).

    Article  Google Scholar 

  15. H. J. Ruijssenaars and S. Hartmans, Appl. Microbiol. Biotechnol. 65, 177 (2004).

    Article  CAS  Google Scholar 

  16. L. Stoica et al., Fuel Cells 9, 53 (2009).

    Article  CAS  Google Scholar 

  17. W.-D. Fessner et al., Biocatalysis—From Discovery to Application (Springer, Berlin, 2000), p. 1.

    Google Scholar 

  18. E. Katchalski-Katzir and D. M. Kraemer, J. Mol. Catal., B Enzym. 10, 157 (2000).

    Article  CAS  Google Scholar 

  19. M. Mazur, P. Krysinski, A. Michota-Kaminska, J. Bukowska, J. Rogalski, and G. J. Blanchard, Bioelectrochemistry 71, 15 (2007).

    Article  CAS  Google Scholar 

  20. R. S. Freire, N. Duran, and L. T. Kubota, Anal. Chim. Acta 463, 229 (2002).

    Article  CAS  Google Scholar 

  21. M. L. Mena, V. Carralero, A. González-Cortés, P. Yáñez-Sedeño, and J. M. Pingarrón, Electroanalysis 17, 2147 (2005).

    Article  CAS  Google Scholar 

  22. S. Rodríguez Couto, J. F. Osma, V. Saravia, G. M. Gübitz, and J. L. Toca Herrera, Appl. Catal., A 329, 156 (2007).

    Article  Google Scholar 

  23. Y. Tan, W. Deng, Y. Li, Z. Huang, Y. Meng, Q. Xie, M. Ma, and S. Yao, J. Phys. Chem. B 114, 5016 (2010).

    Article  CAS  Google Scholar 

  24. Y. Zhang, G.-M. Zeng, L. Tang, D.-L. Huang, X.-Y. Jiang, and Y.-N. Chen, Biosens. Bioelectron. 22, 2121 (2007).

    Article  CAS  Google Scholar 

  25. A. K. Sarma, P. Vatsyayan, P. Goswami, and S. D. Minteer, Biosens. Bioelectron. 24, 2313 (2009).

    Article  CAS  Google Scholar 

  26. S. Küpcü, C. Mader, and M. Sára, Biotechnol. Appl. Biochem. 21, 275 (1995).

    Google Scholar 

  27. M. Sára, S. Küpcü, C. Weiner, S. Weigert, and U. B. Sleytr, in Immobilised Macromolecules: Application Potentials, edited by U. B. Sleytr, P. Messner, D. Pum, and M. Sára (Springer, London, 1993), p. 71.

    Google Scholar 

  28. M. Sára and U. B. Sleytr, Appl. Microbiol. Biotechnol. 30, 184 (1989).

    Article  Google Scholar 

  29. D. Pum and U. B. Sleytr, Colloids Surf., A 102, 99 (1995).

    Article  CAS  Google Scholar 

  30. L. O. Martins, C. M. Soares, M. M. Pereira, M. Teixeira, T. Costa, G. H. Jones, and A. O. Henriques, J. Biol. Chem. 277, 18849 (2002).

    Article  CAS  Google Scholar 

  31. S. Shleev, Y. Wang, M. Gorbacheva, A. Christenson, D. Haltrich, R. Ludwig, T. Ruzgas, and L. Gorton, Electroanalysis 20, 963 (2008).

    Article  CAS  Google Scholar 

  32. S. Weigert and M. Sara, J. Membr. Sci. 106, 147 (1995).

    Article  CAS  Google Scholar 

  33. F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, Methods Enzymol. 185, 60 (1990).

    Article  CAS  Google Scholar 

  34. J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY, 2001), Vol. 3, p. 1.

    Google Scholar 

  35. U. K. Laemmli, Nature 227, 680 (1970).

    Article  CAS  Google Scholar 

  36. M. Jarosch, E. M. Egelseer, C. Huber, D. Moll, D. Mattanovich, U. B. Sleytr, and M. Sára, Microbiology 147, 1353 (2001).

    CAS  Google Scholar 

  37. E. M. Egelseer, K. Leitner, M. Jarosch, C. Hotzy, S. Zayni, U. B. Sleytr, and M. Sára, J. Bacteriol. 180, 1488 (1998).

    CAS  Google Scholar 

  38. W. Ries, C. Hotzy, I. Schocher, U. B. Sleytr, and M. Sára, J. Bacteriol. 179, 3892 (1997).

    CAS  Google Scholar 

  39. P. Messner, F. Hollaus, and U. B. Sleytr, Int. J. Syst. Bacteriol. 34, 202 (1984).

    Article  Google Scholar 

  40. V. Morozova, G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, and A. I. Yaropolov, Biochemistry (Mosc.) 72, 1136 (2007).

    Article  CAS  Google Scholar 

  41. U. B. Sleytr, M. Sára, Z. Küpcü, and P. Messner, Arch. Microbiol. 146, 19 (1986).

    Article  CAS  Google Scholar 

  42. W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

    CAS  Google Scholar 

  43. G. Sauerbrey, Z. Phys. 155, 206 (1959).

    Article  CAS  Google Scholar 

  44. F. B. Diniz R. R. Ueta A. M. da C. Pedrosa, M. da C. Areias, V. R. A. Pereira, E. D. Silva, J. G. da Silva, A. G. P. Ferreira, and Y. M. Gomes, Biosens. Bioelectron. 19, 79 (2003).

    Article  CAS  Google Scholar 

  45. J. E. B. Randles, Discuss. Faraday Soc. 1, 11 (1947).

    Article  Google Scholar 

  46. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley-Interscience, Hoboken, NJ, 2005), p. 1.

    Book  Google Scholar 

  47. F. Vianello, A. Cambria, S. Ragusa, M. T. Cambria, L. Zennaro, and A. Rigo, Biosens. Bioelectron. 20, 315 (2004).

    Article  CAS  Google Scholar 

  48. S. Wang and D. Du, Sensors 2, 41 (2002).

    Article  CAS  Google Scholar 

  49. P. C. Gufler, University of Natural Resources and Applied Life Sciences, 2004.

    Google Scholar 

  50. B. Schuster, D. Pum, and U. B. Sleytr, BioInterphases 3, FA3 (2008).

    Article  CAS  Google Scholar 

  51. M. Ozgen, R. N. Reese, A. Z. Tulio, J. C. Scheerens, and A. R. Miller, J. Agric. Food Chem. 54, 1151 (2006).

    Article  CAS  Google Scholar 

  52. F. C. d. Abreu, P. A. L. Ferraz, and M. O. F. Goulart, J. Braz. Chem. Soc. 13, 19 (2002).

    Article  Google Scholar 

  53. H.-G. Hong and W. Park, Langmuir 17, 2485 (2001).

    Article  CAS  Google Scholar 

  54. M. Klis, J. Rogalski, and R. Bilewicz, Bioelectrochemistry 71, 2 (2007).

    Article  CAS  Google Scholar 

  55. B. Schuster and U. B. Sleytr, Soft Matter 5, 334 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferner-Ortner-Bleckmann, J., Schrems, A., Ilk, N. et al. Multitechnique study on a recombinantly produced Bacillus halodurans laccase and an S-layer/laccase fusion protein. Biointerphases 6, 63–72 (2011). https://doi.org/10.1116/1.3589284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3589284