Skip to main content

Journal for Biophysical Chemistry

Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network

Abstract

In simple epithelia, such as living epithelial pancreatic cancer cells (Panc-1), unusual amounts of keratin filaments can be found, which makes these cells an ideal model system to study the role of keratin for cell mechanical properties. In this work, the elastic moduli of Panc-1 cells and their extracted in-situ subcellular keratin intermediate filament network are determined and compared with each other. For this, the living adherent cells and their extracted keratin network were probed with local quasistatic indentation testing during large deformations using the Atomic Force Microscope (AFM). We determined the elastic modulus of the skeletonized but structurally intact keratin network to be in the order of 10 Pa, while the living cell elastic modulus ranged from 100 to 500 Pa. By removing microfilaments, microtubules, membranes and soluble cytoplasmic components during keratin network extraction, we excluded effects caused by crosslinking with other filamentous fibers and from the viscosity of the cytoplasm. Thus, the determined elastic modulus equals the actual elastic modulus inherent to such a keratin filamentous network. In our assessment of the effective mechanical contribution of the architecturally intact, skeletonized keratin network to living cell mechanics, we come to the conclusion that it plays only a very limited role. Evidently, the quantitative dominance of keratin in these cells does not reflect a strong influence on determining the cell's elastic modulus. Instead, keratin like other filamentous structures in the cell's scaffolding, e.g., F-actin and microtubuli, is one part of a greater whole. nt]mis|No proof corrections received from author prior to publication.

References

  1. K. J. Van Vliet, G. Bao, and S. Suresh, Acta Mater. 51, 5881 (2003).

    Article  Google Scholar 

  2. S. Rammensee, P. A. Janmey, and A. R. Bausch, Eur. Biophys. J. 36, 661 (2007).

    Article  CAS  Google Scholar 

  3. K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, and D. A. Weitz, Curr. Opin. Cell Biol. 19, 101 (2007).

    Article  CAS  Google Scholar 

  4. T. M. Magin, P. Vijayaraj, and R. E. Leube, Exp. Cell Res. 313, 2021 (2007).

    Article  CAS  Google Scholar 

  5. E. Fuchs and D. W. Cleveland, Science 279, 514 (1998).

    Article  CAS  Google Scholar 

  6. Y.-C. Lin, N. Y. Yao, C. P. Broedersz, H. Herrmann, F. C. MacKintosh, and D. A. Weitz, Phys. Rev. Lett. 104, 058101 (2010).

    Article  Google Scholar 

  7. S. Yamada, D. Wirtz, and P. A. Coulombe, J. Struct. Biol. 134, 44 (2003).

    Google Scholar 

  8. P. A. Janmey, U. Euteneuer, P. Traub, and M. Schliwa, J. Cell Biol. 113, 155 (1991).

    Article  CAS  Google Scholar 

  9. Y. Luan, O. Lieleg, B. Wagner, and A. R. Bausch, Biophys. J. 94, 688 (2008).

    Article  CAS  Google Scholar 

  10. S. Suresh, Acta Biomater. 3, 413 (2007).

    Article  Google Scholar 

  11. L. Kreplak and D. Fudge, Bioessays 29, 26 (2007).

    Article  CAS  Google Scholar 

  12. M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. P. Spatz, and T. Seufferlein, Nat. Cell Biol. 5, 803 (2003).

    Article  CAS  Google Scholar 

  13. S. Sivaramakrishnan, J. V. DeGiulio, L. Lorand, R. D. Goldman, and K. M. Ridge, Proc. Natl. Acad. Sci. U.S.A. 105, 889 (2008).

    Article  CAS  Google Scholar 

  14. T. Busch, “Die Rolle von Zytoskelettelementen bei der zellulären Migration und Differenzierung,” Ph.D. thesis, University of Ulm (2008).

    Google Scholar 

  15. R. Proksch, “Thermal noise spring constant cantilever calibration technique with the MFP-3D AFM,” http://www.asylumresearch.com (June 2009).

    Google Scholar 

  16. H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).

    Article  Google Scholar 

  17. J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    Article  CAS  Google Scholar 

  18. E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, Biophys. J. 82, 2798 (2002).

    Article  CAS  Google Scholar 

  19. H. Hertz, Journal für die reine und angewandte Mathematik 92, 156 (1881).

    Google Scholar 

  20. I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Theory of elasticity (Elsevier Butterworth-Heinemann, 2005).

    Google Scholar 

  22. N. Caille, O. Thoumine, Y. Tardy, and J. J. Meister, J. Biomech. 35, 177 (2002).

    Article  Google Scholar 

  23. F. Guilak, J. R. Tedrow, and R. Burgkart, Biochem. Biophys. Res. Commun. 269, 781 (2000).

    Article  CAS  Google Scholar 

  24. J. D. Pajerowski, K. N. Dahl, F. L. Zong, P. J. Sammak, and D. E. Discher, Proc. Natl. Acad. Sci. U.S.A. 104, 15619 (2007).

    Article  CAS  Google Scholar 

  25. S. Sivaramakrishnan, J. L. Schneider, A. Sitikov, R. D. Goldman, and K. M. Ridge, Mol. Biol. Cell 20, 2755 (2009).

    Article  CAS  Google Scholar 

  26. D. Russell, P. D. Andrews, J. James, and E. B. Lane, J. Cell Sci. 117, 5233 (2004).

    Article  CAS  Google Scholar 

  27. Q. S. Li, G. Y. Lee, C. N. H. Ong, and C. T. Lim, Biochem. Biophys. Res. Commun. 374, 609 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, N., Busch, T., Seufferlein, T. et al. Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network. Biointerphases 6, 79–85 (2011). https://doi.org/10.1116/1.3601755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3601755