Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network
Biointerphases volume 6, pages 79–85 (2011)
Abstract
In simple epithelia, such as living epithelial pancreatic cancer cells (Panc-1), unusual amounts of keratin filaments can be found, which makes these cells an ideal model system to study the role of keratin for cell mechanical properties. In this work, the elastic moduli of Panc-1 cells and their extracted in-situ subcellular keratin intermediate filament network are determined and compared with each other. For this, the living adherent cells and their extracted keratin network were probed with local quasistatic indentation testing during large deformations using the Atomic Force Microscope (AFM). We determined the elastic modulus of the skeletonized but structurally intact keratin network to be in the order of 10 Pa, while the living cell elastic modulus ranged from 100 to 500 Pa. By removing microfilaments, microtubules, membranes and soluble cytoplasmic components during keratin network extraction, we excluded effects caused by crosslinking with other filamentous fibers and from the viscosity of the cytoplasm. Thus, the determined elastic modulus equals the actual elastic modulus inherent to such a keratin filamentous network. In our assessment of the effective mechanical contribution of the architecturally intact, skeletonized keratin network to living cell mechanics, we come to the conclusion that it plays only a very limited role. Evidently, the quantitative dominance of keratin in these cells does not reflect a strong influence on determining the cell's elastic modulus. Instead, keratin like other filamentous structures in the cell's scaffolding, e.g., F-actin and microtubuli, is one part of a greater whole. nt]mis|No proof corrections received from author prior to publication.
References
K. J. Van Vliet, G. Bao, and S. Suresh, Acta Mater. 51, 5881 (2003).
S. Rammensee, P. A. Janmey, and A. R. Bausch, Eur. Biophys. J. 36, 661 (2007).
K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, and D. A. Weitz, Curr. Opin. Cell Biol. 19, 101 (2007).
T. M. Magin, P. Vijayaraj, and R. E. Leube, Exp. Cell Res. 313, 2021 (2007).
E. Fuchs and D. W. Cleveland, Science 279, 514 (1998).
Y.-C. Lin, N. Y. Yao, C. P. Broedersz, H. Herrmann, F. C. MacKintosh, and D. A. Weitz, Phys. Rev. Lett. 104, 058101 (2010).
S. Yamada, D. Wirtz, and P. A. Coulombe, J. Struct. Biol. 134, 44 (2003).
P. A. Janmey, U. Euteneuer, P. Traub, and M. Schliwa, J. Cell Biol. 113, 155 (1991).
Y. Luan, O. Lieleg, B. Wagner, and A. R. Bausch, Biophys. J. 94, 688 (2008).
S. Suresh, Acta Biomater. 3, 413 (2007).
L. Kreplak and D. Fudge, Bioessays 29, 26 (2007).
M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. P. Spatz, and T. Seufferlein, Nat. Cell Biol. 5, 803 (2003).
S. Sivaramakrishnan, J. V. DeGiulio, L. Lorand, R. D. Goldman, and K. M. Ridge, Proc. Natl. Acad. Sci. U.S.A. 105, 889 (2008).
T. Busch, “Die Rolle von Zytoskelettelementen bei der zellulären Migration und Differenzierung,” Ph.D. thesis, University of Ulm (2008).
R. Proksch, “Thermal noise spring constant cantilever calibration technique with the MFP-3D AFM,” http://www.asylumresearch.com (June 2009).
H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).
J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).
E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, Biophys. J. 82, 2798 (2002).
H. Hertz, Journal für die reine und angewandte Mathematik 92, 156 (1881).
I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).
L. D. Landau and E. M. Lifshitz, Theory of elasticity (Elsevier Butterworth-Heinemann, 2005).
N. Caille, O. Thoumine, Y. Tardy, and J. J. Meister, J. Biomech. 35, 177 (2002).
F. Guilak, J. R. Tedrow, and R. Burgkart, Biochem. Biophys. Res. Commun. 269, 781 (2000).
J. D. Pajerowski, K. N. Dahl, F. L. Zong, P. J. Sammak, and D. E. Discher, Proc. Natl. Acad. Sci. U.S.A. 104, 15619 (2007).
S. Sivaramakrishnan, J. L. Schneider, A. Sitikov, R. D. Goldman, and K. M. Ridge, Mol. Biol. Cell 20, 2755 (2009).
D. Russell, P. D. Andrews, J. James, and E. B. Lane, J. Cell Sci. 117, 5233 (2004).
Q. S. Li, G. Y. Lee, C. N. H. Ong, and C. T. Lim, Biochem. Biophys. Res. Commun. 374, 609 (2008).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Walter, N., Busch, T., Seufferlein, T. et al. Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network. Biointerphases 6, 79–85 (2011). https://doi.org/10.1116/1.3601755
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1116/1.3601755