Skip to main content

Journal for Biophysical Chemistry

Effects of nanometric roughness on surface properties and fibroblast's initial cytocompatibilities of Ti6AI4V

Abstract

Titanium alloy (Ti6Al4V) has widespread medical applications because of its excellent biocompatibility. Its biological responses can further be enhanced by polishing and passivation. Unfortunately, preparing titanium alloy samples of nanometric roughness is by far much more difficult than preparing those of micrometric roughness, and numerous investigations on roughness induced effects are all focused on micrometric scales. For the remedy, we investigate, at nanometric scale, the influence of roughness on surface properties and biological responses. Six groups of Ti6Al4V with average roughness (R a) values of 2.75–30.34 nm are prepared. The results indicated that nanometric roughness of samples change the wettability and amphoteric OH groups. The contact angles monotonically decrease from 2.75 to 30.34 nm and the rougher surfaces lead to higher wettability. The in vitro cell-culture studies, using Murine NIH-3T3 fibroblasts, showed the spindle-shaped morphology on rougher surface compared to round/spherical morphology on smoother surface. A cytodetacher is employed to quantitatively measure the initial adhesion force of fibroblasts to specimen. The adhesion strength of fibroblasts, ranging from 55 to 193 nN, is significantly influenced by the nanometric roughness while the surface is within the range of 2.75–30.34 nm R a roughness, and the adhesion strength appeared stronger for rougher surface. The cell number on the smoother surface is higher than on the rougher surface at 5-day culture. The studies indicated that nanometric roughness would alter the surface properties and further influence cell morphology, adhesion strength, and proliferation.

References

  1. M. Niinomi, Sci. Technol. Adv. Mater. 4, 445 (2003).

    Article  CAS  Google Scholar 

  2. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, Biomaterials 22, 1241 (2001).

    Article  CAS  Google Scholar 

  3. T. M. Lee, R. S. Tsai, E. Chang, C. Y. Yang, and M. R. Yang, J. Mater. Sci.: Mater. Med. 13, 341 (2002).

    Article  CAS  Google Scholar 

  4. C. Buzea, I. I. Pacheco, and K. Robbie, Biointerphases 2, MR17 (2007).

    Article  Google Scholar 

  5. H. J. Kim et al., J. Biomed. Mater. Res. Part A 74, 366 (2005).

    Article  CAS  Google Scholar 

  6. X. Liu, P. K. Chu, and C. Ding, Mater. Sci. Eng. R. 47, 49 (2004).

    Article  Google Scholar 

  7. S. Rupprecht, A. Bloch-Birkholz, B. Lethaus, F. W. Neukam, and A. Schlegel, Clin. Oral Implants Res. 16, 98 (2005).

    Article  Google Scholar 

  8. A. Balamurugan, A. H. S. Rebelo, S. Kannan, J. M. F. Ferreira, J. Michel, G. Balossier, and S. Rajeswari, J. Biomed. Mater. Res. Part B. 81, 441 (2007).

    CAS  Google Scholar 

  9. J. E. Raynor, J. R. Capadona, D. M. Collard, T. A. Petrie, and A. J. García, Biointerphases 4, FA3 (2009).

    Article  CAS  Google Scholar 

  10. Y. R. Yang, R. Glover, and J. L. Ong, Colloids Surf., B 30, 291 (2003).

    Article  CAS  Google Scholar 

  11. V. Perla and T. J. Webster, J. Biomed. Mater. Res. Part A 75, 356 (2005).

    Article  Google Scholar 

  12. K. Y. Cai, J. Bossert, and K. D. Jandt, Colloids Surf., B 49, 136 (2006).

    Article  CAS  Google Scholar 

  13. C. C. Wang, Y. C. Hsu, S. C. Lu, and T. M. Lee, J. Biomed. Mater. Res. Part A 88, 370 (2009).

    Article  Google Scholar 

  14. Technical Documents Department, NanoScope Command Reference Manual (Digital Instruments, CA, 1996), Chap. 12, pp. 87–88.

  15. F. Mabboux, L. Ponsonnet, J. J. Morrier. N. Jaffrezic, and O. Barsotti, Colloids Surf., B 39, 199 (2004).

    Article  CAS  Google Scholar 

  16. J. Lawrence, L. Hao, and H. R. Chew, Surf. Coat. Technol. 200, 5581 (2006).

    Article  CAS  Google Scholar 

  17. W. Zhou et al., Surf. Coat. Technol. 200, 6155 (2006).

    Article  CAS  Google Scholar 

  18. A. V. Bandura, D. G. Sykes, V. Shapovalov, T. N. Troung, J. D. Kubicki, and R. A. Evarestov, J. Phys. Chem. B 108, 7844 (2004).

    Article  CAS  Google Scholar 

  19. L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac, and N. Jaffrezic, Mater. Sci. Eng., C 21, 157 (2002).

    Article  Google Scholar 

  20. M. J. Chen, C. Y. Wur, D. P. Song, W. M. Dong, and K. Li, J. Mater. Sci: Mater. Med. 20, 1831 (2009).

    Article  CAS  Google Scholar 

  21. K. Webb, V. Hlady, and P. A. Tresco, J. Biomed. Mater. Res. 41, 422 (1998).

    Article  CAS  Google Scholar 

  22. T. A. Horbett, J. J. Waldburger, B. D. Ratner, and A. S. Hoffman, J. Biomed. Mater. Res. 22, 383 (1988).

    Article  CAS  Google Scholar 

  23. G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, Proc. Natl. Acad. Sci. U.S.A. 96, 471 (1999).

    Article  CAS  Google Scholar 

  24. G. Sagvolden, Biophys. J. 77, 526 (1999).

    Article  CAS  Google Scholar 

  25. B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao, and X. D. Zhang, J. Mater. Sci.: Mater. Med. 13, 457 (2002).

    Article  CAS  Google Scholar 

  26. L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, Mater. Sci. Eng., C 23, 551 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R.CC., Hsieh, MC. & Lee, TM. Effects of nanometric roughness on surface properties and fibroblast's initial cytocompatibilities of Ti6AI4V. Biointerphases 6, 87–97 (2011). https://doi.org/10.1116/1.3604528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3604528