Skip to main content

Journal for Biophysical Chemistry

TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi3 + primary ions

Abstract

Although previous studies have demonstrated that TOF-SIMS is a powerful method for the characterization of adsorbed proteins due to its specificity and surface sensitivity, it was unclear from earlier work whether the differences between proteins observed on uniform flat surfaces were large enough to facilitate clear image contrast between similar proteins in small areas on topographically complex samples that are more typical of biological tissues. The goal of this study was to determine whether Bi3 + could provide sufficiently high sensitivity to provide clear identification of the different proteins in an image. In this study, 10 μm polystyrene microspheres were adsorbed with one of three different proteins, human serum albumin (HSA), bovine serum albumin (BSA), and hemoglobin. Spheres coated with HSA were then mixed with spheres coated with either BSA (a very similar protein) or hemoglobin (a dramatically different protein), and deposited on silicon substrates. Fluorescent labeling was used to verify the SIMS results. With maximum autocorrelation factors (MAF) processing, images showed clear contrast between both the very different proteins (HSA and hemoglobin) and the very similar proteins (HSA and BSA). Similar results were obtained with and without the fluorescent labels. MAF images were calculated using both the full spectrum and only characteristic amino acid fragments. Although better image contrast was obtained using the full spectrum, differences between the spheres were still evident when only the amino acid fragments were included in the analysis, suggesting that we are truly observing differences between the proteins themselves. These results demonstrate that TOF-SIMS, with a Bi3 + primary ion, is a powerful technique for characterizing interfacial proteins not only on large uniform surfaces, but also with high spatial resolution on the topographically complex samples typical in biological analysis.

References

  1. T. A. Horbett, Colloids Surf., B 2, 225 (1994).

    Article  CAS  Google Scholar 

  2. T. O. Collier, C. H. Thomas, J. M. Anderson, and K. E. Healy, J. Biomed. Mater. Res. 49, 141 (2000).

    Article  CAS  Google Scholar 

  3. J. A. Hubbell, Curr. Opin. Biotechnol. 14, 551 (2003).

    Article  CAS  Google Scholar 

  4. D. Lindsay and A. von Holy, J. Hosp. Infect. 64, 313 (2006).

    CAS  Google Scholar 

  5. M. A. Daeschel and J. McGuire, Biotechnol. Genet. Eng. Rev. 15, 413 (1998).

    CAS  Google Scholar 

  6. J. D. Bryers, Biotechnol. Bioeng. 100, 1 (2008).

    Article  CAS  Google Scholar 

  7. Y. F. Dufrene, C. J. Boonaert, and P. G. Rouxhet, Methods Enzymol. 310, 375 (1999).

    Article  CAS  Google Scholar 

  8. M. D. McKee and A. Nanci, Connect. Tissue Res. 35, 197 (1996).

    Article  CAS  Google Scholar 

  9. C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, Tissue Eng. 11, 1 (2005).

    Article  CAS  Google Scholar 

  10. S. Aoyagi and M. Kudo, Biosens. Bioelectron. 20, 1626 (2005).

    Article  CAS  Google Scholar 

  11. O. Iguerb, C. Poleunis, F. Mazeas, C. Compere, and P. Bertrand, Langmuir 24, 12272 (2008).

    Article  CAS  Google Scholar 

  12. A. Tang, C. Wang, R. Stewart, and J. Kopecek, Bioconjug. Chem. 11, 363 (2000).

    Article  CAS  Google Scholar 

  13. D. Belazi, S. Sole-Domenech, B. Johansson, M. Schalling, and P. Sjovall, Histochem. Cell. Biol. 132, 105 (2009).

    Article  CAS  Google Scholar 

  14. Y. K. Magnusson, P. Friberg, P. Sjovall, J. Malm, and Y. Chen, Obes. (Silver Spring) 16, 2745 (2008).

    Article  CAS  Google Scholar 

  15. M. J. Baker, L. Zheng, N. Winograd, N. P. Lockyer, and J. C. Vickerman, Langmuir 24, 11803 (2008).

    Article  CAS  Google Scholar 

  16. Y. Wu, F. I. Simonovsky, B. D. Ratner, and T. A. Horbett, J. Biomed. Mater. Res. A 74, 722 (2005).

    Google Scholar 

  17. P. Tengvall, I. Lundstrom, and B. Liedberg, Biomaterials 19, 407 (1998).

    Article  CAS  Google Scholar 

  18. M. S. Wagner, B. J. Tyler, and D. G. Castner, Anal. Chem. 74, 1824 (2002).

    Article  CAS  Google Scholar 

  19. R. A. Caldwell, J. E. Woodell, S. P. Ho, S. W. Shalaby, T. Boland, E. M. Langan, and M. LaBerge, J. Biomed. Mater. Res. 62, 514 (2002).

    Article  CAS  Google Scholar 

  20. J. R. Smith, M. T. Cicerone, and C. W. Meuse, Langmuir 25, 4571 (2009).

    Article  CAS  Google Scholar 

  21. F. Cheng, L. J. Gamble, and D. G. Castner, Anal. Chem. 80, 2564 (2008).

    Article  CAS  Google Scholar 

  22. C. Brüning, S. Hellweg, S. Dambach, D. Lipinsky, and H. F. Arlinghaus, Surf. Interface Anal. 38, 191 (2006).

    Article  Google Scholar 

  23. B. A. Gotliv and A. Veis, Cells Tissues Organs 189, 12 (2009).

    Article  CAS  Google Scholar 

  24. J. B. Lhoest, M. S. Wagner, C. D. Tidwell, and D. G. Castner, J. Biomed. Mater. Res. 57, 432 (2001).

    Article  CAS  Google Scholar 

  25. M. S. Wagner, T. A. Horbett, and D. G. Castner, Biomaterials 24, 1897 (2003).

    Article  CAS  Google Scholar 

  26. M. S. Wagner, S. L. McArthur, M. Shen, T. A. Horbett, and D. G. Castner, J. Biomater. Sci. Polym. Ed. 13, 407 (2002).

    Article  CAS  Google Scholar 

  27. M. S. Wagner, M. Shen, T. A. Horbett, and D. G. Castner, J. Biomed. Mater. Res. A 64, 1 (2003).

    Article  CAS  Google Scholar 

  28. Y. P. Kim, M. Y. Hong, J. Kim, E. Oh, H. K. Shon, D. W. Moon, H. S. Kim, and T. G. Lee, Anal. Chem. 79, 1377 (2007).

    Article  CAS  Google Scholar 

  29. K. Leufgen, M. Mutter, H. Vogel, and W. Szymczak, J. Am. Chem. Soc. 125, 8911 (2003).

    Article  CAS  Google Scholar 

  30. A. M. Belu, D. J. Graham, and D. G. Castner, Biomaterials 24, 3635 (2003).

    Article  CAS  Google Scholar 

  31. H. E. Canavan, X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner, J. Biomed. Mater. Res. A 75, 1 (2005).

    Google Scholar 

  32. C. Y. Lee, G. M. Harbers, D. W. Grainger, L. J. Gamble, and D. G. Castner, J. Am. Chem. Soc. 129, 9429 (2007).

    Article  CAS  Google Scholar 

  33. S. Rangarajan and B. J. Tyler, Appl. Surf. Sci. 231, 406 (2004).

    Article  Google Scholar 

  34. R. De Mondt, L. Van Vaeck, A. Heile, H. F. Arlinghaus, N. Nieuwjaer, A. Delcorte, P. Bertrand, J. Lenaerts, and F. Vangaever, Rapid Commun. Mass Spectrom. 22, 1481 (2008).

    Article  Google Scholar 

  35. D. Touboul, F. Kollmer, E. Niehuis, A. Brunelle, and O. Laprevote, J. Am. Soc. Mass Spectrom. 16, 1608 (2005).

    Article  CAS  Google Scholar 

  36. M. Wagner, A. Loy, R. Nogueira, U. Purkhold, N. Lee, and H. Daims, Antonie van Leeuwenhoek 81, 665 (2002).

    Article  CAS  Google Scholar 

  37. B. J. Tyler, Appl. Surf. Sci. 252, 6875 (2006).

    Article  CAS  Google Scholar 

  38. B. J. Tyler, G. Rayal, and D. G. Castner, Biomaterials 28, 2412 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Tyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, B.J., Bruening, C., Rangaranjan, S. et al. TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi3 + primary ions. Biointerphases 6, 135–141 (2011). https://doi.org/10.1116/1.3622347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3622347