Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols

Abstract

Gold nanoparticles (AuNPs) functionalized with a short chain amine-terminated alkanethiol (HS-(CH2)2NH2 or C2 NH2-thiol) are prepared via a direct synthesis method and then ligand-exchanged with a long chain amine-terminated alkanethiol (HS-(CH2)11NH2 or C11 NH2-thiol). Transmission electron microscopy analysis showed the AuNPs were relatively spherical with a median diameter of 24.2±4.3 nm. X-ray photoelectron spectroscopy was used to determine surface chemistry of the functionalized and purified AuNPs. The ligand-exchange process was monitored within the time range from 30 min to 61 days. By the fourth day of exchange all the C2 NH2-thiol molecules had been replaced by C11 NH2-thiol molecules. C11 NH2-thiol molecules continued to be incorporated into the C11 NH2 self-assembled monolayer between days 4 and 14 of ligand-exchange. As the length of the exchange time increased, the functionalized AuNPs became more stable against aggregation. The samples were purified by a centrifugation and resuspension method. The C2 NH2 covered AuNPs aggregated immediately when purification was attempted. The C11 NH2 covered AuNPs could be purified with minimal or no aggregation. Small amounts of unbound thiol (15%) and oxidized sulfur (20%) species were detected on the ligand-exchanged AuNPs. Some of the unbound thiol and all of the oxidized sulfur could be removed by treating the functionalized AuNPs with HCl. © 2011 American Vacuum Society. [DOI: 10.1116/1.3622481]

References

  1. 1

    D. Pissuwan, T. Niidome, and M.B.J. Cortie, J. Controlled Release 149, 65 (2011).

    Article  CAS  Google Scholar 

  2. 2

    E. Katz and I. Willner, Angew. Chem., Int. Ed. Engl. 43, 6042 (2004).

    Article  CAS  Google Scholar 

  3. 3

    C. S. S. R. Kumar, Nanotechnologies for the Life Sciences, 1st ed. (Wiley-VCH Verlag, Weinheim, 2005).

    Google Scholar 

  4. 4

    D. W. Grainger and D. G. Castner, Adv. Mater. 20, 867 (2008).

    Article  CAS  Google Scholar 

  5. 5

    D. R. Baer, D. J. Gaspar, P. Nachimuthu, S. D. Techane, and D. G. Castner, Anal. Bioanal. Chem. 396, 983 (2010).

    Article  CAS  Google Scholar 

  6. 6

    M.-C. Daniel and A. Didier, Chem. Rev. 104, 293 (2004).

    Article  CAS  Google Scholar 

  7. 7

    I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 829 (2005).

    Article  CAS  Google Scholar 

  8. 8

    S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006).

    Article  CAS  Google Scholar 

  9. 9

    P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).

    Article  CAS  Google Scholar 

  10. 10

    Z. Wang, J. Lee, A. R. Cossins, and M. Brust, Anal. Chem. 77, 5770 (2005).

    Article  CAS  Google Scholar 

  11. 11

    T. A. Taton, G. Lu, and C. A. Mirkin, J. Am. Chem. Soc. 123, 5164 (2001).

    Article  CAS  Google Scholar 

  12. 12

    T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Science 289, 1757 (2000).

    Article  CAS  Google Scholar 

  13. 13

    K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, Cancer Res. 63, 1999 (2003).

    CAS  Google Scholar 

  14. 14

    D. Shenoy, W. Fu, J. Li, C. Crasto, G. Jones, C. DiMarzio, S. Sridhar, and M. Amiji, Int. J. Nanomedicine 1, 51 (2006).

    Article  CAS  Google Scholar 

  15. 15

    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) 382, 607 (1996).

    Article  CAS  Google Scholar 

  16. 16

    R. Leggett, E. E. Lee-Smith, S. M. Jickells, and D. A. Russell, Angew. Chem., Int. Ed. 46, 4100 (2007).

    Article  CAS  Google Scholar 

  17. 17

    J.-S. Lee, S. I. Stoeva, and C. A. Mirkin, J. Am. Chem. Soc. 128, 8899 (2006).

    Article  CAS  Google Scholar 

  18. 18

    J. M. Bergen, H. A. von Recum, T. T. Goodman, A. P. Massey, and S. H. Pun, Macromol. Biosci. 6, 506 (2006).

    Article  CAS  Google Scholar 

  19. 19

    K. Aslan, J. R. Lakowicz, and C. D. Geddes, Anal. Chem. 77, 2007 (2005).

    Article  CAS  Google Scholar 

  20. 20

    K. Aslan, C. C. Luhrs, and V. H. Perez-Luna, J. Phys. Chem. B 108, 15631 (2004).

    Article  CAS  Google Scholar 

  21. 21

    A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, Jr., and P. G. Schultz, Nature (London) 382, 609 (1996).

    Article  CAS  Google Scholar 

  22. 22

    J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105, 1103 (2005).

    Article  CAS  Google Scholar 

  23. 23

    R. G. Nuzzo and D. L. J. Allara, Am. Chem. Soc. 105, 4481 (1983).

    Article  CAS  Google Scholar 

  24. 24

    T. J. Lenk, V. M. Hallmark, C. L. Hoffman, J. F. Rabolt, D. G. Castner, C. Erdelen, and H. Ringsdorf, Langmuir 10, 4610 (1994).

    Article  CAS  Google Scholar 

  25. 25

    L. Strong and G. M. Whitesides, Langmuir 4, 546 (1988).

    Article  CAS  Google Scholar 

  26. 26

    C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. J. Nuzzo, Am. Chem. Soc. 111, 321 (1989).

    Article  CAS  Google Scholar 

  27. 27

    M.-W. Tsao, C. L. Hoffman, J. F. Rabolt, H. E. Johnson, D. G. Castner, C. Erdelen, and H. Ringsdorf, Langmuir 13, 4317 (1997).

    Article  CAS  Google Scholar 

  28. 28

    L. H. Dubois and R. G. Nuzzo, Annu. Rev. Phys. Chem. 43, 437 (1992).

    Article  CAS  Google Scholar 

  29. 29

    S. Pan, D. G. Castner, and B. D. Ratner, Langmuir 14, 3545 (1998).

    Article  CAS  Google Scholar 

  30. 30

    A. Ulman, Chem. Rev. 96, 1533 (1996).

    Article  CAS  Google Scholar 

  31. 31

    D. J. Graham and B. D. Ratner, Langmuir 18, 5861 (2002).

    Article  CAS  Google Scholar 

  32. 32

    D. G. Castner, K. Hinds, and D. W. Grainger, Langmuir 12, 5083 (1996).

    Article  CAS  Google Scholar 

  33. 33

    F. Tao and S. L. Bernasek, Chem. Rev. 107, 1408 (2007).

    Article  CAS  Google Scholar 

  34. 34

    F. Cheng, L. J. Gamble, and D. G. Castner, Anal. Chem. 80, 2564 (2008).

    Article  CAS  Google Scholar 

  35. 35

    C.-Y. Lee, P. Gong, G. M. Harbers, D. W. Grainger, D. G. Castner, and L. J. Gamble, Anal. Chem. 78, 3316 (2006).

    Article  CAS  Google Scholar 

  36. 36

    N. Xia, Y. Hu, D.W. Grainger, and D. G. Castner, Langmuir 18, 3255 (2002).

    Article  CAS  Google Scholar 

  37. 37

    T. Niidome, K. Nakashima, H. Takahashi, and Y. Niidome, Chem. Commun. 17, 1978 (2004).

    Article  Google Scholar 

  38. 38

    S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee, and T. G. Park, Int. J. Pharm. 364, 94 (2008).

    Article  CAS  Google Scholar 

  39. 39

    J.-W. Kim, J. H. Kim, S. J. Chung, and B. H. Chung, Analyst (Cambridge, U. K.) 134, 1291 (2009).

    Article  CAS  Google Scholar 

  40. 40

    J. E. Baio, T. Weidner, J. Brison, D. J. Graham, L. J. Gamble, and D. G. Castner, J. Electron Spectrosc. Relat. Phenom. 172, 2 (2009).

    Article  CAS  Google Scholar 

  41. 41

    A. C. Templeton, M. J. Hostetler, E. K. Warmoth, S. Chen, C. M. Hartshorn, V. M. Krishnamurthy, M. D. E. Forbes, and R. W. Murray, J. Am. Chem. Soc. 120, 4845 (1998).

    Article  CAS  Google Scholar 

  42. 42

    E. C. Cutler, E. Lundin, B. D. Garabato, D. Choi, and Y.-S. Shon, Mater. Res. Bull. 42, 1178 (2007).

    Article  CAS  Google Scholar 

  43. 43

    J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).

    Article  Google Scholar 

  44. 44

    G. Frens, Nature (London) 241, 20 (1973).

    CAS  Google Scholar 

  45. 45

    C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, Langmuir 12, 3763 (1996).

    Article  CAS  Google Scholar 

  46. 46

    S.-Y. Lin, Y.-T. Tsai, C.-C. Chen, C.-M. Lin, and C. -H. Chen, J. Phys. Chem. B 108, 2134 (2004).

    Article  CAS  Google Scholar 

  47. 47

    S. D. Techane, L. J. Gamble, and D. G. Castner, J. Phys. Chem. C 115, 9432 (2011).

    Article  CAS  Google Scholar 

  48. 48

    H. Wang, S. Chen, and L. Li, and S. Jiang, Langmuir 21, 2633 (2005).

    Article  CAS  Google Scholar 

  49. 49

    H. Wang, D. G. Castner, B. D. Ratner, and S. Jiang, Langmuir 20, 1877 (2004).

    Article  CAS  Google Scholar 

  50. 50

    B. D. Ratner and D.G. Castner, “Electron Spectroscopy for Chemical Analysis”, 2nd ed., edited by J. C. V. Gilmore (Wiley, Chichester, 2009), pp 47–112.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David G. Castner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Techane, S.D., Gamble, L.J. & Castner, D.G. X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols. Biointerphases 6, 98–104 (2011). https://doi.org/10.1116/1.3622481

Download citation