Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Direct assessment of living cell mechanical responses during deformation inside microchannel restrictions


The deformation of suspended cells inside microchannel restrictions mimics passive cell transportation in the blood circulation system of the body. The cells traverse or get stuck in narrow vessels, as, e.g., during the metastasis of tumor cells. In this work, the mechanical responses of suspended pancreatic cancer cells as they move through and deform inside microchannel restrictions are assessed with a cantilever-based polydimethylsiloxane (PDMS) force sensor. Incorporated into a flow cell chip, the PDMS cantilever is integrated into the boundary wall of a narrow microrestriction. Upon being forced to enter the restriction by an applied flow, the cell exerts pressure on the cantilever, which then bends. By assuming a uniformly loaded cantilever, the total force and pressure on the cantilever can be calculated using elastic beam theory. This technique has the advantage of presenting an absolute and direct measure, which is independent of the applied flow and frictional processes at the channel-cell interface; in contrast to, e.g., measuring cell mechanics indirectly via cell sliding velocities. Furthermore, a high number of cells can be examined in a short time compared to other single cell mechanical testing devices.


  1. 1

    J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, Proc. Natl. Acad. Sci. U.S.A. 100,14618 (2003).

    Article  CAS  Google Scholar 

  2. 2

    M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Lab Chip 8, 1062 (2008).

    Article  CAS  Google Scholar 

  3. 3

    S. Gabriele, A. M. Benoliel, P. Bongrand, and O. Theodoly, Biophys. J. 96, 4308 (2009).

    Article  CAS  Google Scholar 

  4. 4

    H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, Biomed. Microdevices 11, 557 (2009).

    Article  CAS  Google Scholar 

  5. 5

    P. Gassmann and J. Haier, Clin. Exp. Metastasis 25, 171 (2008).

    Article  CAS  Google Scholar 

  6. 6

    M. L. Adams, M. L. Johnston, A. Scherer, and S. Quake, J. Micromech. Microeng. 15, 1517 (2005).

    Article  CAS  Google Scholar 

  7. 7

    J. Loverich, I. Kanno, and A. Kotera, Microfluid. Nanofluid. 3, 427 (2007).

    Article  Google Scholar 

  8. 8

    J. Guck et al., Biophys. J. 88, 3689 (2005).

    Article  CAS  Google Scholar 

  9. 9

    R. M. Hochmuth, J. Biomech. 33, 15 (2000).

    Article  CAS  Google Scholar 

  10. 10

    M. Lieber, J. Mazetta, W. Nelson-Rees, M. Kaplan, and G. Todaro, Int. J. Cancer 15, 741 (1975).

    Article  CAS  Google Scholar 

  11. 11

    N. Caille, O. Thoumine, J. Tardy, and J. J. Meister, J. Biomech. 35, 177 (2002).

    Article  Google Scholar 

  12. 12

    J. P. Jean, D. S. Gray, A. A. Spector, and C. S. Chen, J. Biomech. Eng. 126, 552 (2004).

    Article  Google Scholar 

  13. 13

    M. J. Madou, Fundamentals in Microfabrication (CRC Press, Boca Raton, FL, 1997).

    Google Scholar 

  14. 14

    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Elsevier Butterworth-Heinemann, Oxford, 2005).

    Google Scholar 

  15. 15

    H. Hertz and J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

  16. 16

    I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  17. 17

    A. Torii, M. Sasaki, K. Hane, and S. Okuma, Meas. Sci. Technol. 7, 179 (1996).

    Article  CAS  Google Scholar 

  18. 18

    J. P. Spatz, S. Sheiko, M. Möller, and O. Marti, Langmuir 13, 4699 (1997).

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walter, N., Micoulet, A., Seufferlein, T. et al. Direct assessment of living cell mechanical responses during deformation inside microchannel restrictions. Biointerphases 6, 117–125 (2011).

Download citation