Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior

  • 1416 Accesses

  • 2 Citations

Abstract

Cellular micropatterning with bio-adhesive and nonadhesive areas has attracted increasing interest for the precise design of cell-to-surface attachment in cell biology studies, tissue engineering, cell-based biosensors, biological assays, and drug development and screening. In this paper we describe a simple and efficient method to create a two-dimensional stable cellular microenvironment, which is based on (1) forming a protein-resistant oligo(ethylene glycol) methyl ether methacrylate polymer layer on the substrates via surface-initiated atom transfer radical polymerization; (2) placing a defined photomask on the substrate and exposing the substrate to ultraviolet light; and (3) immersing the patterned surface in a fibronectin solution to form cell-adhesive protein patterns in a cellresistant background. The resulting surfaces are tailored into cell-adhesive and cell-resistant regions. Three different types of cells (NIH-3T3, PC12, bone marrow-derived mesenchymal stem cells) are seeded on such patterned surfaces to form cellular patterns. The geometric effects on cell behavior are investigated. The long-term stability is tested by NIH-3T3 fibroblasts and mesenchymal stem cells and excellent retention of cellular patterns is observed. The strategy illustrated here offers an efficient way to create a stable, patterned cellular microenvironment, and could be employed in tissue engineering to study the effect of micropatterns on the proliferation and differentiation of cells, and in particular mesenchymal stem cells. © 2011 American Vacuum Society.

References

  1. 1

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

  2. 2

    L. Kam, W. Shain, J. N. Turner, and R. Bizios, Biomaterials 20, 2343 (1999).

  3. 3

    M. M. Stevens and J. H. George, Science 310, 1135 (2005).

  4. 4

    D. H. Kim, K. Han, K. Gupta, K. W. Kwon, K. Y. Suh, and A. Levchenko, Biomaterials 30, 5433 (2009).

  5. 5

    M. J. Dalby, N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo, Nature Mater. 6, 997 (2007).

  6. 6

    E. K. F. Yim, S. W. Pang, and K. W. Leong, Exp. Cell. Res. 313, 1820 (2007).

  7. 7

    S. A. Ruiz and C. S. Chen, Stem Cells 26, 2921 (2008).

  8. 8

    C. S. Chen, X. Y. Jiang, and G. M. Whitesides, MRS Bull. 30, 194 (2005).

  9. 9

    J. Y. Lim and H. J. Donahue, Tissue. Eng. 13, 1879 (2007).

  10. 10

    C. J. Bettinger, R. Langer, and J. T. Borenstein, Angew. Chem., Int. Ed. 48, 5406 (2009).

  11. 11

    K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, PNAS 107, 4872 (2010).

  12. 12

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

  13. 13

    E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

  14. 14

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

  15. 15

    M. Veiseh, B. T. Wickes, D. G. Castner, and M. Q. Zhang, Biomaterials 25, 3315 (2004).

  16. 16

    N. P. Huang, R. Michel, J. Voros, M. Textor, R. Hofer, A. Rossi, D. L. Elbert, J. A. Hubbell, and N. D. Spencer, Langmuir 17, 489 (2001).

  17. 17

    D. Falconnet, A. Koenig, T. Assi, and M. Textor, Adv. Funct. Mater. 14, 749 (2004).

  18. 18

    H. W. Ma, J. H. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. 16, 338 (2004).

  19. 19

    H. W. Ma, D. J. Li, X. Sheng, B. Zhao, and A. Chilkoti, Langmuir 22, 3751 (2006).

  20. 20

    A. Hucknall, A. J. Simnick, R. T. Hill, A. Chilkoti, A. Garcia, M. S. Johannes, R. L. Clark, S. Zauscher, and B. D. Ratner, Biointerphases 4, 50 (2009).

  21. 21

    J. Ladd, Z. Zhang, S. Chen, J. C. Hower, and S. Jiang, Biomacromolecules 9, 1357 (2008).

  22. 22

    J. W. Lussi, D. Falconnet, J. A. Hubbell, M. Textor, and G. Csucs, Biomaterials 27, 2534 (2006).

  23. 23

    J. M. Karp, Y. Yeo, W. L. Geng, C. Cannizarro, K. Yan, D. S. Kohane, G. Vunjak-Novakovic, R. S. Langer, and M. Radisic, Biomaterials 27, 4755 (2006).

  24. 24

    H. Otsuka, A. Hirano, Y. Nagasaki, T. Okano, Y. Horiike, and K. Kataoka, ChemBioChem 5, 850 (2004).

  25. 25

    W. J. Wang, K. Itaka, S. Ohba, N. Nishiyama, U. I. Chung, Y. Yamasaki, and K. Kataoka, Biomaterials 30, 2705 (2009).

  26. 26

    R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).

  27. 27

    R. Michel, J. W. Lussi, G. Csucs, I. Reviakine, G. Danuser, B. Ketterer, J. A. Hubbell, M. Textor, and N. D. Spencer, Langmuir 18, 3281 (2002).

  28. 28

    J. T. Connelly, J. E. Gautrot, B. Trappmann, D. W.-M. Tan, G. Donati, W. T. S. Huck, and F. M. Watt, Nat. Cell Biol. 12, 711 (2010).

  29. 29

    M. S. Hahn, J. S. Miller, and J. L. West, Adv. Mater. 17, 2939 (2005).

  30. 30

    A. Blau and T. Ugniwenko, Phys. Status Solidi B 4, 1873 (2007).

  31. 31

    K. Y. Suh, Y. S. Kim, and H. H. Lee, Adv. Mater. 13, 1386 (2001).

  32. 32

    U. Schmelmer, R. Jordan, W. Geyer, A. Gölzhäuser, and M. Grunze, Angew. Chem., Int. Ed. 42, 559 (2003).

  33. 33

    A. Gölzhäuser, W. Eck, W. Geyer, V. Stadler, T. Weimann, and M. Grunze, Adv. Mater. 13, 806 (2001).

  34. 34

    Q. He, Y. Tian, A. Küller, M. Grunze, A. Gölzhäuser, and J. Li, J. Nanosci. Nanotechnol. 6, 1838 (2006).

  35. 35

    Q. He, A. Küller, M. Grunze, and J. Li, Langmuir 23, 3981 (2007).

  36. 36

    R. Iwata, P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, and Y. Iwasaki, Biomacromolecules 5, 2308 (2004).

  37. 37

    R. Kamitani, K. Niikura, T. Onodera, N. Iwasaki, H. Shimaoka, and K. Ijiro, Bull. Chem. Soc. Jpn. 80, 1808 (2007).

  38. 38

    A. Azioune, M. Storch, M. Bornens, M. The'ry, and M. Piel, Lab Chip 9, 1640 (2009).

  39. 39

    S. A. Ahmad, A. Hucknall, A. Chilkoti, and G. J. Legge, Langmuir 26, 9937 (2010).

  40. 40

    W. K. Cho, B. Kong, H. J. Park, J. Kim, W. Chegal, J. S. Choi, and I. S. Choi, Biomaterials 31, 9565 (2010).

  41. 41

    J. P. Frimat, J. Sisnaiske, S. Subbiah, H. Menne, P. Godoy, P. Lampen, M. Leist, J. Franzke, J. G. Hengstler, C. Van Thriel, and J. West, Lab Chip 10, 701 (2010).

  42. 42

    S. Kelly, E. M. Regan, J. B. Uney, A. D. Dick, J. P. McGeehan, E. J. Mayer, F. Claeyssens, and B. B. Grp, Biomaterials 29, 2573 (2008).

  43. 43

    F. Morin, N. Nishimura, L. Griscom, B. Lepioufle, H. Fujita, Y. Takamura, and E. Tamiya, Biosens. Bioelectron. 21, 1093 (2006).

  44. 44

    K. A. Purpura, J. E. Aubin, and P. W. Zandstra, Stem Cells 22, 39 (2003).

  45. 45

    E. H. Javazon, D. C. Colter, E. J. Schwarz, and D. J. Prockop, Stem Cells 19, 219 (2001).

  46. 46

    R. Mcbeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell. 6, 483 (2004).

  47. 47

    A. Hucknall, D. H. Kim, S. Rangarajan, R. T. Hill, W. M. Reichert, and A. Chilkoti, Adv. Mater. 21, 1968 (2009).

  48. 48

    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie 1992).

  49. 49

    J. J. Ramsden, J. Stat. Phys. 73, 853 (1993).

  50. 50

    J. J. Ramsden, D. J. Roush, D. S. Gill, R. Kurrat, and R. C. Willson, J. Am. Chem. Soc. 117, 8511 (1995).

  51. 51

    X. Mao, C. L. Chu, Z. Mao, and J. J. Wang, Tissue Cell 37, 349 (2005).

  52. 52

    L. Andruzzi, W. Senaratne, A. Hexemer, E. D. Sheets, B. Ilic, E. J. Kramer, B. Baird, and C. K. Ober, Langmuir 21, 2495 (2005).

  53. 53

    W. H. Yu, E. T. Kang, K. G. Neoh, and S. P. Zhu, J. Phys. Chem. B 107, 10198 (2003).

  54. 54

    K. L. Norrod, and K. L. Rowlen, J. Am. Chem. Soc. 120, 2656 (1998).

  55. 55

    A. Hozumi, T. Masuda, K. Hayashi, H. Sugimura, O. Takai, and T. Kameyama, Langmuir 18, 9022 (2002).

  56. 56

    S. Asakura, A. Hozumi, T. Yamaguchi, and A. Fuwa, Thin Solid Films 500, 237 (2006).

  57. 57

    M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies, G. J. Leggett, Langmuir 23, 7328 (2007).

  58. 58

    C.-Y. Xue and K.-L. Yang, J. Colloid Interface Sci. 344, 48 (2010).

  59. 59

    T. A. Horbett. Colloids. Surf. B 2, 225 (1994).

  60. 61

    A. Rosenthal, A. Macdonald, and J. Voldman, Biomaterials 28, 3208 (2007).

  61. 62

    Q. L. Ying, J. Nichols, I. Chambers, and A. Smith, Cell 115, 281 (2003).

  62. 63

    M. Amit, M. K. Carpenter, M. S. Inokuma, C. P. Chiu, C. P. Harris, M. A. Waknitz, J. Itskovitz-Eldor, and J. A. Thomson, Dev. Biol. 227, 271 (2000).

  63. 64

    M. Håkanson, M. Textor, and M. Charnley, Integr. Biol-Uk 3, 31 (2011).

  64. 65

    A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).

Download references

Author information

Correspondence to Ning-Ping Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, N., Yu, H., Wang, Y. et al. Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior. Biointerphases 6, 143–152 (2011). https://doi.org/10.1116/1.3644381

Download citation