Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior

Abstract

Cellular micropatterning with bio-adhesive and nonadhesive areas has attracted increasing interest for the precise design of cell-to-surface attachment in cell biology studies, tissue engineering, cell-based biosensors, biological assays, and drug development and screening. In this paper we describe a simple and efficient method to create a two-dimensional stable cellular microenvironment, which is based on (1) forming a protein-resistant oligo(ethylene glycol) methyl ether methacrylate polymer layer on the substrates via surface-initiated atom transfer radical polymerization; (2) placing a defined photomask on the substrate and exposing the substrate to ultraviolet light; and (3) immersing the patterned surface in a fibronectin solution to form cell-adhesive protein patterns in a cellresistant background. The resulting surfaces are tailored into cell-adhesive and cell-resistant regions. Three different types of cells (NIH-3T3, PC12, bone marrow-derived mesenchymal stem cells) are seeded on such patterned surfaces to form cellular patterns. The geometric effects on cell behavior are investigated. The long-term stability is tested by NIH-3T3 fibroblasts and mesenchymal stem cells and excellent retention of cellular patterns is observed. The strategy illustrated here offers an efficient way to create a stable, patterned cellular microenvironment, and could be employed in tissue engineering to study the effect of micropatterns on the proliferation and differentiation of cells, and in particular mesenchymal stem cells. © 2011 American Vacuum Society.

References

  1. 1

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

    CAS  Article  Google Scholar 

  2. 2

    L. Kam, W. Shain, J. N. Turner, and R. Bizios, Biomaterials 20, 2343 (1999).

    CAS  Article  Google Scholar 

  3. 3

    M. M. Stevens and J. H. George, Science 310, 1135 (2005).

    CAS  Article  Google Scholar 

  4. 4

    D. H. Kim, K. Han, K. Gupta, K. W. Kwon, K. Y. Suh, and A. Levchenko, Biomaterials 30, 5433 (2009).

    CAS  Article  Google Scholar 

  5. 5

    M. J. Dalby, N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo, Nature Mater. 6, 997 (2007).

    CAS  Article  Google Scholar 

  6. 6

    E. K. F. Yim, S. W. Pang, and K. W. Leong, Exp. Cell. Res. 313, 1820 (2007).

    CAS  Article  Google Scholar 

  7. 7

    S. A. Ruiz and C. S. Chen, Stem Cells 26, 2921 (2008).

    Article  Google Scholar 

  8. 8

    C. S. Chen, X. Y. Jiang, and G. M. Whitesides, MRS Bull. 30, 194 (2005).

    CAS  Article  Google Scholar 

  9. 9

    J. Y. Lim and H. J. Donahue, Tissue. Eng. 13, 1879 (2007).

    CAS  Article  Google Scholar 

  10. 10

    C. J. Bettinger, R. Langer, and J. T. Borenstein, Angew. Chem., Int. Ed. 48, 5406 (2009).

    CAS  Article  Google Scholar 

  11. 11

    K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, PNAS 107, 4872 (2010).

    CAS  Article  Google Scholar 

  12. 12

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    CAS  Article  Google Scholar 

  13. 13

    E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

    CAS  Article  Google Scholar 

  14. 14

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    CAS  Article  Google Scholar 

  15. 15

    M. Veiseh, B. T. Wickes, D. G. Castner, and M. Q. Zhang, Biomaterials 25, 3315 (2004).

    CAS  Article  Google Scholar 

  16. 16

    N. P. Huang, R. Michel, J. Voros, M. Textor, R. Hofer, A. Rossi, D. L. Elbert, J. A. Hubbell, and N. D. Spencer, Langmuir 17, 489 (2001).

    CAS  Article  Google Scholar 

  17. 17

    D. Falconnet, A. Koenig, T. Assi, and M. Textor, Adv. Funct. Mater. 14, 749 (2004).

    CAS  Article  Google Scholar 

  18. 18

    H. W. Ma, J. H. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. 16, 338 (2004).

    CAS  Article  Google Scholar 

  19. 19

    H. W. Ma, D. J. Li, X. Sheng, B. Zhao, and A. Chilkoti, Langmuir 22, 3751 (2006).

    CAS  Article  Google Scholar 

  20. 20

    A. Hucknall, A. J. Simnick, R. T. Hill, A. Chilkoti, A. Garcia, M. S. Johannes, R. L. Clark, S. Zauscher, and B. D. Ratner, Biointerphases 4, 50 (2009).

    Article  Google Scholar 

  21. 21

    J. Ladd, Z. Zhang, S. Chen, J. C. Hower, and S. Jiang, Biomacromolecules 9, 1357 (2008).

    CAS  Article  Google Scholar 

  22. 22

    J. W. Lussi, D. Falconnet, J. A. Hubbell, M. Textor, and G. Csucs, Biomaterials 27, 2534 (2006).

    CAS  Article  Google Scholar 

  23. 23

    J. M. Karp, Y. Yeo, W. L. Geng, C. Cannizarro, K. Yan, D. S. Kohane, G. Vunjak-Novakovic, R. S. Langer, and M. Radisic, Biomaterials 27, 4755 (2006).

    CAS  Article  Google Scholar 

  24. 24

    H. Otsuka, A. Hirano, Y. Nagasaki, T. Okano, Y. Horiike, and K. Kataoka, ChemBioChem 5, 850 (2004).

    CAS  Article  Google Scholar 

  25. 25

    W. J. Wang, K. Itaka, S. Ohba, N. Nishiyama, U. I. Chung, Y. Yamasaki, and K. Kataoka, Biomaterials 30, 2705 (2009).

    CAS  Article  Google Scholar 

  26. 26

    R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).

    CAS  Article  Google Scholar 

  27. 27

    R. Michel, J. W. Lussi, G. Csucs, I. Reviakine, G. Danuser, B. Ketterer, J. A. Hubbell, M. Textor, and N. D. Spencer, Langmuir 18, 3281 (2002).

    CAS  Article  Google Scholar 

  28. 28

    J. T. Connelly, J. E. Gautrot, B. Trappmann, D. W.-M. Tan, G. Donati, W. T. S. Huck, and F. M. Watt, Nat. Cell Biol. 12, 711 (2010).

    CAS  Article  Google Scholar 

  29. 29

    M. S. Hahn, J. S. Miller, and J. L. West, Adv. Mater. 17, 2939 (2005).

    CAS  Article  Google Scholar 

  30. 30

    A. Blau and T. Ugniwenko, Phys. Status Solidi B 4, 1873 (2007).

    CAS  Article  Google Scholar 

  31. 31

    K. Y. Suh, Y. S. Kim, and H. H. Lee, Adv. Mater. 13, 1386 (2001).

    CAS  Article  Google Scholar 

  32. 32

    U. Schmelmer, R. Jordan, W. Geyer, A. Gölzhäuser, and M. Grunze, Angew. Chem., Int. Ed. 42, 559 (2003).

    CAS  Article  Google Scholar 

  33. 33

    A. Gölzhäuser, W. Eck, W. Geyer, V. Stadler, T. Weimann, and M. Grunze, Adv. Mater. 13, 806 (2001).

    Article  Google Scholar 

  34. 34

    Q. He, Y. Tian, A. Küller, M. Grunze, A. Gölzhäuser, and J. Li, J. Nanosci. Nanotechnol. 6, 1838 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Q. He, A. Küller, M. Grunze, and J. Li, Langmuir 23, 3981 (2007).

    CAS  Article  Google Scholar 

  36. 36

    R. Iwata, P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, and Y. Iwasaki, Biomacromolecules 5, 2308 (2004).

    CAS  Article  Google Scholar 

  37. 37

    R. Kamitani, K. Niikura, T. Onodera, N. Iwasaki, H. Shimaoka, and K. Ijiro, Bull. Chem. Soc. Jpn. 80, 1808 (2007).

    CAS  Article  Google Scholar 

  38. 38

    A. Azioune, M. Storch, M. Bornens, M. The'ry, and M. Piel, Lab Chip 9, 1640 (2009).

    CAS  Article  Google Scholar 

  39. 39

    S. A. Ahmad, A. Hucknall, A. Chilkoti, and G. J. Legge, Langmuir 26, 9937 (2010).

    Article  Google Scholar 

  40. 40

    W. K. Cho, B. Kong, H. J. Park, J. Kim, W. Chegal, J. S. Choi, and I. S. Choi, Biomaterials 31, 9565 (2010).

    CAS  Article  Google Scholar 

  41. 41

    J. P. Frimat, J. Sisnaiske, S. Subbiah, H. Menne, P. Godoy, P. Lampen, M. Leist, J. Franzke, J. G. Hengstler, C. Van Thriel, and J. West, Lab Chip 10, 701 (2010).

    CAS  Article  Google Scholar 

  42. 42

    S. Kelly, E. M. Regan, J. B. Uney, A. D. Dick, J. P. McGeehan, E. J. Mayer, F. Claeyssens, and B. B. Grp, Biomaterials 29, 2573 (2008).

    CAS  Article  Google Scholar 

  43. 43

    F. Morin, N. Nishimura, L. Griscom, B. Lepioufle, H. Fujita, Y. Takamura, and E. Tamiya, Biosens. Bioelectron. 21, 1093 (2006).

    CAS  Article  Google Scholar 

  44. 44

    K. A. Purpura, J. E. Aubin, and P. W. Zandstra, Stem Cells 22, 39 (2003).

    Article  Google Scholar 

  45. 45

    E. H. Javazon, D. C. Colter, E. J. Schwarz, and D. J. Prockop, Stem Cells 19, 219 (2001).

    CAS  Article  Google Scholar 

  46. 46

    R. Mcbeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell. 6, 483 (2004).

    CAS  Article  Google Scholar 

  47. 47

    A. Hucknall, D. H. Kim, S. Rangarajan, R. T. Hill, W. M. Reichert, and A. Chilkoti, Adv. Mater. 21, 1968 (2009).

    CAS  Article  Google Scholar 

  48. 48

    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie 1992).

    Google Scholar 

  49. 49

    J. J. Ramsden, J. Stat. Phys. 73, 853 (1993).

    Article  Google Scholar 

  50. 50

    J. J. Ramsden, D. J. Roush, D. S. Gill, R. Kurrat, and R. C. Willson, J. Am. Chem. Soc. 117, 8511 (1995).

    CAS  Article  Google Scholar 

  51. 51

    X. Mao, C. L. Chu, Z. Mao, and J. J. Wang, Tissue Cell 37, 349 (2005).

    CAS  Article  Google Scholar 

  52. 52

    L. Andruzzi, W. Senaratne, A. Hexemer, E. D. Sheets, B. Ilic, E. J. Kramer, B. Baird, and C. K. Ober, Langmuir 21, 2495 (2005).

    CAS  Article  Google Scholar 

  53. 53

    W. H. Yu, E. T. Kang, K. G. Neoh, and S. P. Zhu, J. Phys. Chem. B 107, 10198 (2003).

    CAS  Article  Google Scholar 

  54. 54

    K. L. Norrod, and K. L. Rowlen, J. Am. Chem. Soc. 120, 2656 (1998).

    CAS  Article  Google Scholar 

  55. 55

    A. Hozumi, T. Masuda, K. Hayashi, H. Sugimura, O. Takai, and T. Kameyama, Langmuir 18, 9022 (2002).

    CAS  Article  Google Scholar 

  56. 56

    S. Asakura, A. Hozumi, T. Yamaguchi, and A. Fuwa, Thin Solid Films 500, 237 (2006).

    CAS  Article  Google Scholar 

  57. 57

    M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies, G. J. Leggett, Langmuir 23, 7328 (2007).

    CAS  Article  Google Scholar 

  58. 58

    C.-Y. Xue and K.-L. Yang, J. Colloid Interface Sci. 344, 48 (2010).

    CAS  Article  Google Scholar 

  59. 59

    T. A. Horbett. Colloids. Surf. B 2, 225 (1994).

    CAS  Article  Google Scholar 

  60. 61

    A. Rosenthal, A. Macdonald, and J. Voldman, Biomaterials 28, 3208 (2007).

    CAS  Article  Google Scholar 

  61. 62

    Q. L. Ying, J. Nichols, I. Chambers, and A. Smith, Cell 115, 281 (2003).

    CAS  Article  Google Scholar 

  62. 63

    M. Amit, M. K. Carpenter, M. S. Inokuma, C. P. Chiu, C. P. Harris, M. A. Waknitz, J. Itskovitz-Eldor, and J. A. Thomson, Dev. Biol. 227, 271 (2000).

    CAS  Article  Google Scholar 

  63. 64

    M. Håkanson, M. Textor, and M. Charnley, Integr. Biol-Uk 3, 31 (2011).

    Article  Google Scholar 

  64. 65

    A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ning-Ping Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, N., Yu, H., Wang, Y. et al. Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior. Biointerphases 6, 143–152 (2011). https://doi.org/10.1116/1.3644381

Download citation