Skip to main content

Journal for Biophysical Chemistry

Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior

Abstract

Cellular micropatterning with bio-adhesive and nonadhesive areas has attracted increasing interest for the precise design of cell-to-surface attachment in cell biology studies, tissue engineering, cell-based biosensors, biological assays, and drug development and screening. In this paper we describe a simple and efficient method to create a two-dimensional stable cellular microenvironment, which is based on (1) forming a protein-resistant oligo(ethylene glycol) methyl ether methacrylate polymer layer on the substrates via surface-initiated atom transfer radical polymerization; (2) placing a defined photomask on the substrate and exposing the substrate to ultraviolet light; and (3) immersing the patterned surface in a fibronectin solution to form cell-adhesive protein patterns in a cellresistant background. The resulting surfaces are tailored into cell-adhesive and cell-resistant regions. Three different types of cells (NIH-3T3, PC12, bone marrow-derived mesenchymal stem cells) are seeded on such patterned surfaces to form cellular patterns. The geometric effects on cell behavior are investigated. The long-term stability is tested by NIH-3T3 fibroblasts and mesenchymal stem cells and excellent retention of cellular patterns is observed. The strategy illustrated here offers an efficient way to create a stable, patterned cellular microenvironment, and could be employed in tissue engineering to study the effect of micropatterns on the proliferation and differentiation of cells, and in particular mesenchymal stem cells. © 2011 American Vacuum Society.

References

  1. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

    Article  CAS  Google Scholar 

  2. L. Kam, W. Shain, J. N. Turner, and R. Bizios, Biomaterials 20, 2343 (1999).

    Article  CAS  Google Scholar 

  3. M. M. Stevens and J. H. George, Science 310, 1135 (2005).

    Article  CAS  Google Scholar 

  4. D. H. Kim, K. Han, K. Gupta, K. W. Kwon, K. Y. Suh, and A. Levchenko, Biomaterials 30, 5433 (2009).

    Article  CAS  Google Scholar 

  5. M. J. Dalby, N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo, Nature Mater. 6, 997 (2007).

    Article  CAS  Google Scholar 

  6. E. K. F. Yim, S. W. Pang, and K. W. Leong, Exp. Cell. Res. 313, 1820 (2007).

    Article  CAS  Google Scholar 

  7. S. A. Ruiz and C. S. Chen, Stem Cells 26, 2921 (2008).

    Article  Google Scholar 

  8. C. S. Chen, X. Y. Jiang, and G. M. Whitesides, MRS Bull. 30, 194 (2005).

    Article  CAS  Google Scholar 

  9. J. Y. Lim and H. J. Donahue, Tissue. Eng. 13, 1879 (2007).

    Article  CAS  Google Scholar 

  10. C. J. Bettinger, R. Langer, and J. T. Borenstein, Angew. Chem., Int. Ed. 48, 5406 (2009).

    Article  CAS  Google Scholar 

  11. K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, PNAS 107, 4872 (2010).

    Article  CAS  Google Scholar 

  12. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  13. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

    Article  CAS  Google Scholar 

  14. K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    Article  CAS  Google Scholar 

  15. M. Veiseh, B. T. Wickes, D. G. Castner, and M. Q. Zhang, Biomaterials 25, 3315 (2004).

    Article  CAS  Google Scholar 

  16. N. P. Huang, R. Michel, J. Voros, M. Textor, R. Hofer, A. Rossi, D. L. Elbert, J. A. Hubbell, and N. D. Spencer, Langmuir 17, 489 (2001).

    Article  CAS  Google Scholar 

  17. D. Falconnet, A. Koenig, T. Assi, and M. Textor, Adv. Funct. Mater. 14, 749 (2004).

    Article  CAS  Google Scholar 

  18. H. W. Ma, J. H. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. 16, 338 (2004).

    Article  CAS  Google Scholar 

  19. H. W. Ma, D. J. Li, X. Sheng, B. Zhao, and A. Chilkoti, Langmuir 22, 3751 (2006).

    Article  CAS  Google Scholar 

  20. A. Hucknall, A. J. Simnick, R. T. Hill, A. Chilkoti, A. Garcia, M. S. Johannes, R. L. Clark, S. Zauscher, and B. D. Ratner, Biointerphases 4, 50 (2009).

    Article  Google Scholar 

  21. J. Ladd, Z. Zhang, S. Chen, J. C. Hower, and S. Jiang, Biomacromolecules 9, 1357 (2008).

    Article  CAS  Google Scholar 

  22. J. W. Lussi, D. Falconnet, J. A. Hubbell, M. Textor, and G. Csucs, Biomaterials 27, 2534 (2006).

    Article  CAS  Google Scholar 

  23. J. M. Karp, Y. Yeo, W. L. Geng, C. Cannizarro, K. Yan, D. S. Kohane, G. Vunjak-Novakovic, R. S. Langer, and M. Radisic, Biomaterials 27, 4755 (2006).

    Article  CAS  Google Scholar 

  24. H. Otsuka, A. Hirano, Y. Nagasaki, T. Okano, Y. Horiike, and K. Kataoka, ChemBioChem 5, 850 (2004).

    Article  CAS  Google Scholar 

  25. W. J. Wang, K. Itaka, S. Ohba, N. Nishiyama, U. I. Chung, Y. Yamasaki, and K. Kataoka, Biomaterials 30, 2705 (2009).

    Article  CAS  Google Scholar 

  26. R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).

    Article  CAS  Google Scholar 

  27. R. Michel, J. W. Lussi, G. Csucs, I. Reviakine, G. Danuser, B. Ketterer, J. A. Hubbell, M. Textor, and N. D. Spencer, Langmuir 18, 3281 (2002).

    Article  CAS  Google Scholar 

  28. J. T. Connelly, J. E. Gautrot, B. Trappmann, D. W.-M. Tan, G. Donati, W. T. S. Huck, and F. M. Watt, Nat. Cell Biol. 12, 711 (2010).

    Article  CAS  Google Scholar 

  29. M. S. Hahn, J. S. Miller, and J. L. West, Adv. Mater. 17, 2939 (2005).

    Article  CAS  Google Scholar 

  30. A. Blau and T. Ugniwenko, Phys. Status Solidi B 4, 1873 (2007).

    Article  CAS  Google Scholar 

  31. K. Y. Suh, Y. S. Kim, and H. H. Lee, Adv. Mater. 13, 1386 (2001).

    Article  CAS  Google Scholar 

  32. U. Schmelmer, R. Jordan, W. Geyer, A. Gölzhäuser, and M. Grunze, Angew. Chem., Int. Ed. 42, 559 (2003).

    Article  CAS  Google Scholar 

  33. A. Gölzhäuser, W. Eck, W. Geyer, V. Stadler, T. Weimann, and M. Grunze, Adv. Mater. 13, 806 (2001).

    Article  Google Scholar 

  34. Q. He, Y. Tian, A. Küller, M. Grunze, A. Gölzhäuser, and J. Li, J. Nanosci. Nanotechnol. 6, 1838 (2006).

    Article  CAS  Google Scholar 

  35. Q. He, A. Küller, M. Grunze, and J. Li, Langmuir 23, 3981 (2007).

    Article  CAS  Google Scholar 

  36. R. Iwata, P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, and Y. Iwasaki, Biomacromolecules 5, 2308 (2004).

    Article  CAS  Google Scholar 

  37. R. Kamitani, K. Niikura, T. Onodera, N. Iwasaki, H. Shimaoka, and K. Ijiro, Bull. Chem. Soc. Jpn. 80, 1808 (2007).

    Article  CAS  Google Scholar 

  38. A. Azioune, M. Storch, M. Bornens, M. The'ry, and M. Piel, Lab Chip 9, 1640 (2009).

    Article  CAS  Google Scholar 

  39. S. A. Ahmad, A. Hucknall, A. Chilkoti, and G. J. Legge, Langmuir 26, 9937 (2010).

    Article  Google Scholar 

  40. W. K. Cho, B. Kong, H. J. Park, J. Kim, W. Chegal, J. S. Choi, and I. S. Choi, Biomaterials 31, 9565 (2010).

    Article  CAS  Google Scholar 

  41. J. P. Frimat, J. Sisnaiske, S. Subbiah, H. Menne, P. Godoy, P. Lampen, M. Leist, J. Franzke, J. G. Hengstler, C. Van Thriel, and J. West, Lab Chip 10, 701 (2010).

    Article  CAS  Google Scholar 

  42. S. Kelly, E. M. Regan, J. B. Uney, A. D. Dick, J. P. McGeehan, E. J. Mayer, F. Claeyssens, and B. B. Grp, Biomaterials 29, 2573 (2008).

    Article  CAS  Google Scholar 

  43. F. Morin, N. Nishimura, L. Griscom, B. Lepioufle, H. Fujita, Y. Takamura, and E. Tamiya, Biosens. Bioelectron. 21, 1093 (2006).

    Article  CAS  Google Scholar 

  44. K. A. Purpura, J. E. Aubin, and P. W. Zandstra, Stem Cells 22, 39 (2003).

    Article  Google Scholar 

  45. E. H. Javazon, D. C. Colter, E. J. Schwarz, and D. J. Prockop, Stem Cells 19, 219 (2001).

    Article  CAS  Google Scholar 

  46. R. Mcbeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell. 6, 483 (2004).

    Article  CAS  Google Scholar 

  47. A. Hucknall, D. H. Kim, S. Rangarajan, R. T. Hill, W. M. Reichert, and A. Chilkoti, Adv. Mater. 21, 1968 (2009).

    Article  CAS  Google Scholar 

  48. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie 1992).

    Google Scholar 

  49. J. J. Ramsden, J. Stat. Phys. 73, 853 (1993).

    Article  Google Scholar 

  50. J. J. Ramsden, D. J. Roush, D. S. Gill, R. Kurrat, and R. C. Willson, J. Am. Chem. Soc. 117, 8511 (1995).

    Article  CAS  Google Scholar 

  51. X. Mao, C. L. Chu, Z. Mao, and J. J. Wang, Tissue Cell 37, 349 (2005).

    Article  CAS  Google Scholar 

  52. L. Andruzzi, W. Senaratne, A. Hexemer, E. D. Sheets, B. Ilic, E. J. Kramer, B. Baird, and C. K. Ober, Langmuir 21, 2495 (2005).

    Article  CAS  Google Scholar 

  53. W. H. Yu, E. T. Kang, K. G. Neoh, and S. P. Zhu, J. Phys. Chem. B 107, 10198 (2003).

    Article  CAS  Google Scholar 

  54. K. L. Norrod, and K. L. Rowlen, J. Am. Chem. Soc. 120, 2656 (1998).

    Article  CAS  Google Scholar 

  55. A. Hozumi, T. Masuda, K. Hayashi, H. Sugimura, O. Takai, and T. Kameyama, Langmuir 18, 9022 (2002).

    Article  CAS  Google Scholar 

  56. S. Asakura, A. Hozumi, T. Yamaguchi, and A. Fuwa, Thin Solid Films 500, 237 (2006).

    Article  CAS  Google Scholar 

  57. M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies, G. J. Leggett, Langmuir 23, 7328 (2007).

    Article  CAS  Google Scholar 

  58. C.-Y. Xue and K.-L. Yang, J. Colloid Interface Sci. 344, 48 (2010).

    Article  CAS  Google Scholar 

  59. T. A. Horbett. Colloids. Surf. B 2, 225 (1994).

    Article  CAS  Google Scholar 

  60. A. Rosenthal, A. Macdonald, and J. Voldman, Biomaterials 28, 3208 (2007).

    Article  CAS  Google Scholar 

  61. Q. L. Ying, J. Nichols, I. Chambers, and A. Smith, Cell 115, 281 (2003).

    Article  CAS  Google Scholar 

  62. M. Amit, M. K. Carpenter, M. S. Inokuma, C. P. Chiu, C. P. Harris, M. A. Waknitz, J. Itskovitz-Eldor, and J. A. Thomson, Dev. Biol. 227, 271 (2000).

    Article  CAS  Google Scholar 

  63. M. HÃ¥kanson, M. Textor, and M. Charnley, Integr. Biol-Uk 3, 31 (2011).

    Article  Google Scholar 

  64. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-Ping Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, NP., Yu, H., Wang, YY. et al. Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior. Biointerphases 6, 143–152 (2011). https://doi.org/10.1116/1.3644381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3644381