Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling
Biointerphases volume 6, pages 180–188 (2011)
Abstract
Backfilling a self-assembled monolayer (SAM) of long poly (ethylene glycol) (PEG) with short PEG is a well-known strategy to improve its potential to resist fouling. Here it is shown, using xray photoelectron spectroscopy, contact angle, and atomic force microscopy, that backfilling PEG thiol with oligo (ethylene glycol) (OEG) terminated alkane thiol molecules results in underbrush formation. The authors also confirm the absence of phase separated arrangement, which is commonly observed with backfilling experiments involving SAMs of short chain alkane thiol with long chain alkane thiol. Furthermore, it was found that OEG addition caused less PEG desorption when compared to alkane thiol. The ability of surface to resist fouling was tested through serum adsorption and bacterial adhesion studies. The authors demonstrate that the mixed monolayer with PEG and OEG is better than PEG at resisting protein adsorption and bacterial adhesion, and conclude that backfilling PEG with OEG resulting in the underbrush formation enhances the ability of PEG to resist fouling.
Refereces
D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).
I. Banerjee, R. C. Pangule, and R. S. Kane, Adv. Mater. 23, 690 (2010).
K. Sauer, A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies, J. Bacteriology 184, 1140 (2002).
S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, J. Colloid Interface Sci. 142, 149 (1991).
S. J. Sofia, V. Premnath, and E.W. Merrill, Macromolecules 31, 5059 (1998).
L. D. Unsworth, H. Sheardown, and J. L. Brash, Biomaterials 26, 5927 (2005).
L. D. Unsworth, H. Sheardown, and J. L. Brash, Langmuir 24, 1924 (2008).
L. D. Unsworth, Z. Tun, H. Sheardown, and J. L. Brash, J. Colloid Interface Sci. 281, 112 (2005).
P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, and L. Gram, Langmuir 19, 6912 (2003).
N. Luo, J. B. Hutchison, K. S. Anseth, and C. N. Bowman, Macromolecules 35, 2487 (2002).
P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials 23, 2043 (2002).
W. Taylor and R. A. L. Jones, Langmuir 26, 13954 (2010).
S. Minko, S. Patil, V. Datsyuk, F. Simon, K.-J. Eichhorn, M. Motornov, D. Usov, I. Tokarev, and M. Stamm, Langmuir 18, 289 (2002).
K. Uchida et al., Biointerphases 2, 126 (2007).
K. Uchida, H. Otsuka, M. Kaneko, K. Kataoka, and Y. Nagasaki, Anal. Chem. 77, 1075 (2005).
T. Kakiuchi, K. Sato, M. Iida, D. Hobara, S.-I. Imabayashi, and K. Niki, Langmuir 16, 7238 (2000).
G. G. Baralia, A.-S. Duwez, B. Nysten, and A. M. Jonas, Langmuir 21, 6825 (2005).
T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997).
S. Brunner et al., Langmuir 15, 6333 (1999).
C.-Y. Lee, P. Gong, G. M. Harbers, D. W. Grainger, D. G. Castner, and L. J. Gamble, Anal. Chem. 78, 3316 (2006).
L. J. G. Chi Ying Lee, David W. Grainger, and David G. Castner, Biointerphases 1, 11 (2006).
P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).
H. Otsuka, Y. Nagasaki, and K. Kataoka, Langmuir 20, 11285 (2004).
D. G. Castner, K. Hinds, and D. W. Grainger, Langmuir 12, 5083 (1996).
See supplementary material at http://dx.doi.org/10.1116/1.3647506 url for the basis for calculating the value of inelastic mean free path of Au 4f photoelectrons through poly (ethylene glycol) using equation S1 and S2 is described in page 2. High resolution C 1s and S 2p x-ray photoelectron spectra of various mixed monolayer and control surfaces are presented in Figure S1. The contact angles for water, formamide and α-bromonapthalene measured on various mixed monolayer surfaces are shown in Table S1a. The Lifshitz van der Waals component (ie187-1), electron acceptor component (ie187-2), electron donor component (ie187-3 ) of water, formamide and α-Bromonapthalene, the solvents used to calculate surface energy components, are presented in Table S1b. Representative QCM plots showing the change in frequency upon exposure to 10 % FBS on various mixed monolayer and control surfaces are presented in Figure S2.
P. J. Cumpson, Surf. Interface Anal. 31, 23 (2001).
C. J. Van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev. 88, 927 (1988).
K. Sweers, K. van der Werf, M. Bennink, and V. Subramaniam, Nanoscale Res. Lett. 6, 270 (2011).
E. B. Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara, and M. D. Porter, Langmuir 4, 365 (1988).
M. A. Cole, H. Thissen, D. Losic, and N. H. Voelcker, Surf. Sci. 601, 1716 (2007).
B. Menz, R. Knerr, A. Göpferich, and C. Steinem, Biomaterials 26, 4237 (2005).
M. R. Nejadnik, H. C. van der Mei, W. Norde, and H. J. Busscher, Biomaterials 29, 4117 (2008).
S. Tokumitsu, A. Liebich, S. Herrwerth, W. Eck, M. Himmelhaus, and M. Grunze, Langmuir 18, 8862 (2002).
E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Lokanathan, A.R., Zhang, S., Regina, V.R. et al. Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases 6, 180–188 (2011). https://doi.org/10.1116/1.3647506
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1116/1.3647506