Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces

Abstract

Nanobubbles formed on monocrystalline gold/water interface by means of the ethanol-to-water solvent exchange were exposed to the solutions of either bovine serum albumin or papain proteins. Both proteins do not change the position of nanobubbles in water, as observed by in situ tapping mode atomic force microscopy imaging before and after the introduction of the protein. The aqueous environment was subsequently replaced by ethanol. While all nanobubbles were found to dissolve in ethanol in the presence of bovine serum albumin, most of them survived when papain was employed. The protective ability of papain was ascribed to its resistance towards the protein denaturation in aqueous solutions of ethanol. The authors employed in situ atomic force nanolithography to investigate the nanomorphology of the papain/nanobubble assemblies in ethanol.

References

  1. 1

    J. L. Parker, P. M. Claesson, and P. Attard, J. Phys. Chem. 98, 8468 (1994).

    Article  CAS  Google Scholar 

  2. 2

    S. Ljunggren and J. Ch. Eriksson, Colloids Surf., A 129, 151 (1997).

    Article  Google Scholar 

  3. 3

    V. S. J. Craig, Soft Matter 7, 40 (2011).

    Article  CAS  Google Scholar 

  4. 4

    B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso, and D. Lohse, Phys. Rev. Lett. 98, 204502 (2007).

    Article  Google Scholar 

  5. 5

    W. A. Ducker, Langmuir 25, 8907 (2009).

    Article  CAS  Google Scholar 

  6. 6

    S. T. Lou, Z. Q. Ouyang, Y. Zhang, X. J. Li, J. Hu, M. Q. Li, and F. J. Yang, J. Vac. Sci. Technol. B 18, 2573 (2000).

    Article  CAS  Google Scholar 

  7. 7

    N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Langmuir 16, 6377 (2000).

    Article  CAS  Google Scholar 

  8. 8

    S. T. Lou, J. X. Gao, X. D. Xiao, X. J. Li, G. L. Li, Y. Zhang, M. Q. Li, J. L. Sun, and J. Hu, Chin. Phys. 10, S108 (2001).

    Google Scholar 

  9. 9

    S. T. Lou et al., Mater. Charact. 48, 211 (2002).

    Article  CAS  Google Scholar 

  10. 10

    X. H. Zhang, X. D. Zhang, S. T. Lou, Z. X. Zhang, J. L. Sun, and J. Hu, Langmuir 20, 3813 (2004).

    Article  CAS  Google Scholar 

  11. 11

    L. J. Zhang, Y. Zhang, X. H. Zhang, Z. X. Li, G. X. Shen, M. Ye, C. H. Fan, H. P. Fang, and J. Hu, Langmuir 22, 8109 (2006).

    Article  CAS  Google Scholar 

  12. 12

    G. Liu, Z. H. Wu, and V. S. J. Craig, J. Phys. Chem. C 112, 16748 (2008).

    Article  CAS  Google Scholar 

  13. 13

    Z. H. Wu, H. Chen, Y. M. Dong, H. L. Mao, J. Sun, S. Chen, V. S. J. Craig, and J. Hu, J. Colloid. Interface Sci. 328, 10 (2008).

    Article  CAS  Google Scholar 

  14. 14

    S. Yang, P. Tsai, E. S. Kooij, A. Prosperetti, H. J. W. Zandvliet, and D. Lohse, Langmuir 25, 1466 (2009).

    Article  CAS  Google Scholar 

  15. 15

    X. H. Zhang and W. Ducker, Langmuir 23, 12478 (2007).

    Article  CAS  Google Scholar 

  16. 16

    P. Janda, O. Frank, Z. Bastl, M. Klementová, H., Tarábková, and L., Kavan, Nanotechnology 21, 095707 (2010).

    Article  Google Scholar 

  17. 17

    Z. H. Wu, X. H. Zhang, X. D. Zhang, J. L. Sun, Y. M. Dong, and J. Hu, Chin. Sci. Bull. 52, 1913 (2007).

    Article  CAS  Google Scholar 

  18. 18

    X. H. Zhang, G. Li, N. Maeda, and J. Hu, Langmuir 22, 9238 (2006).

    Article  CAS  Google Scholar 

  19. 19

    L. Zhang, X. H. Zhang, C. Fan, Y. Zhang, and J. Hu, Langmuir 25, 8860 (2009).

    Article  CAS  Google Scholar 

  20. 20

    B. M. Borkent, S. de Beer, F. Mugele, and D. Lohse, Langmuir 26, 260 (2010).

    Article  CAS  Google Scholar 

  21. 21

    X. H. Zhang, N. Maeda, and J. Hu, J. Phys. Chem. B 112, 13671 (2008).

    Article  CAS  Google Scholar 

  22. 22

    L. Zhang, X. H. Zhang, Y. Zhang, J. Hu, and H. Fang, Soft Matter 6, 4515 (2010).

    Article  CAS  Google Scholar 

  23. 23

    X. H. Zhang, A. Kumar, and P. J. Scales, Langmuir 27, 2484 (2011).

    Article  CAS  Google Scholar 

  24. 24

    X. H. Zhang, N. Maeda, and V. S. J. Craig, Langmuir 22, 5025 (2006).

    Article  CAS  Google Scholar 

  25. 25

    Y. Wang, B. Bhushan, and X. Zhao, Langmuir 25, 9328 (2009).

    Article  CAS  Google Scholar 

  26. 26

    Z. H. Wu, X. H. Zhang, X. D. Zhang, G. Li, J. Sun, Y. Zhang, M. Li, and J. Hu, Surf. Interface Anal. 38, 990 (2006).

    Article  CAS  Google Scholar 

  27. 27

    M. Holmberg, A. Kühle, J. Garnæs, K. A. Mørch, and A. Boisen, Langmuir 19, 10510 (2003).

    Article  CAS  Google Scholar 

  28. 28

    H. Seo, M. Yoo, and S. Jeon, Langmuir 23, 1623 (2007).

    Article  CAS  Google Scholar 

  29. 29

    H. Seo, N. Jung, D. Lee, and S. Jeon, Colloids Surf., A 336, 99 (2009).

    Article  CAS  Google Scholar 

  30. 30

    X. H. Zhang, Phys. Chem. Chem. Phys. 10, 6842 (2008).

    Article  CAS  Google Scholar 

  31. 31

    B. Song, W. Walczyk, and H. Schönherr, Langmuir 27, 8223 (2011).

    Article  CAS  Google Scholar 

  32. 32

    J. Yang, J. Duan, D. Fornasiero, and J. Ralston, J. Phys. Chem. B 107, 6193 (2003).

    Google Scholar 

  33. 33

    S. Darwich, K. Mougin, L. Vidal, E. Gnecco, and H. Haidara, Nanoscale 3, 1211 (2011).

    Article  CAS  Google Scholar 

  34. 34

    N. Ishida and H. Higashitani, Minerals Engineering 19, 719 (2006).

    Article  CAS  Google Scholar 

  35. 35

    X. H. Zhang and N. Maeda, J. Phys. Chem. C 115, 736 (2011).

    Article  CAS  Google Scholar 

  36. 36

    A. Szabó, M. Kotormán, I. Laczkó, and M. Simon, J. Mol. Catal. BEnzym. 41, 43 (2006).

    Article  Google Scholar 

  37. 37

    R. Liu, P. Qin, L. Wang, X. Zhao, Y. Liu, and X. Hao, J. Biochem. Mol. Toxicol. 24, 66 (2010).

    Article  Google Scholar 

  38. 38

    G. Liu, S. Xu, and Y. Qian, Acc. Chem. Res. 33, 457 (2000).

    Article  Google Scholar 

  39. 39

    P. M. Mendes, C. L. Yeung, and J. A. Preece, Nanoscale Res. Lett. 2, 373 (2007).

    Article  CAS  Google Scholar 

  40. 40

    E. Pişkin, Hacettepe J. Biol. Chem. 35, 157 (2007).

    Google Scholar 

  41. 41

    L. G. Rosa and J. Liang, J. Phys.: Condens. Matter. 21, 483001 (2009).

    Article  Google Scholar 

  42. 42

    P. Klapetek, D. Necčas, A. Campbellová, A. Yacoot, and L. Coenders, Meas. Sci. Technol. 22, 025501 (2011).

    Article  Google Scholar 

  43. 43

    P. Klapetek, I. Ohlídal, D. Franta, A. Montaigne-Ramil, A. Bonanni, D. Stifter, and H. Sitter, Acta Phys. Slov. 53, 223 (2003).

    CAS  Google Scholar 

  44. 44

    P. Klapetek and I. Ohlídal, Ultramicroscopy 94, 19 (2003).

    Article  CAS  Google Scholar 

  45. 45

    A. K. Wright and M. R. Thompson, Biophys. J. 15, 137 (1975).

    Article  CAS  Google Scholar 

  46. 46

    R. W. Pickersgill, G. W. Harris, and E. Garman, Acta Crystallogr., Sect. B: Struct. Sci. B48, 59 (1992).

    Article  CAS  Google Scholar 

  47. 47

    A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. Wiley, New York, 1997 p. 542.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolivosška, V., Gá, M., Hromadová, M. et al. Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces. Biointerphases 6, 164–170 (2011). https://doi.org/10.1116/1.3650300

Download citation