Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces

  • 1086 Accesses

  • 2 Citations

Abstract

Nanobubbles formed on monocrystalline gold/water interface by means of the ethanol-to-water solvent exchange were exposed to the solutions of either bovine serum albumin or papain proteins. Both proteins do not change the position of nanobubbles in water, as observed by in situ tapping mode atomic force microscopy imaging before and after the introduction of the protein. The aqueous environment was subsequently replaced by ethanol. While all nanobubbles were found to dissolve in ethanol in the presence of bovine serum albumin, most of them survived when papain was employed. The protective ability of papain was ascribed to its resistance towards the protein denaturation in aqueous solutions of ethanol. The authors employed in situ atomic force nanolithography to investigate the nanomorphology of the papain/nanobubble assemblies in ethanol.

References

  1. 1

    J. L. Parker, P. M. Claesson, and P. Attard, J. Phys. Chem. 98, 8468 (1994).

  2. 2

    S. Ljunggren and J. Ch. Eriksson, Colloids Surf., A 129, 151 (1997).

  3. 3

    V. S. J. Craig, Soft Matter 7, 40 (2011).

  4. 4

    B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso, and D. Lohse, Phys. Rev. Lett. 98, 204502 (2007).

  5. 5

    W. A. Ducker, Langmuir 25, 8907 (2009).

  6. 6

    S. T. Lou, Z. Q. Ouyang, Y. Zhang, X. J. Li, J. Hu, M. Q. Li, and F. J. Yang, J. Vac. Sci. Technol. B 18, 2573 (2000).

  7. 7

    N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Langmuir 16, 6377 (2000).

  8. 8

    S. T. Lou, J. X. Gao, X. D. Xiao, X. J. Li, G. L. Li, Y. Zhang, M. Q. Li, J. L. Sun, and J. Hu, Chin. Phys. 10, S108 (2001).

  9. 9

    S. T. Lou et al., Mater. Charact. 48, 211 (2002).

  10. 10

    X. H. Zhang, X. D. Zhang, S. T. Lou, Z. X. Zhang, J. L. Sun, and J. Hu, Langmuir 20, 3813 (2004).

  11. 11

    L. J. Zhang, Y. Zhang, X. H. Zhang, Z. X. Li, G. X. Shen, M. Ye, C. H. Fan, H. P. Fang, and J. Hu, Langmuir 22, 8109 (2006).

  12. 12

    G. Liu, Z. H. Wu, and V. S. J. Craig, J. Phys. Chem. C 112, 16748 (2008).

  13. 13

    Z. H. Wu, H. Chen, Y. M. Dong, H. L. Mao, J. Sun, S. Chen, V. S. J. Craig, and J. Hu, J. Colloid. Interface Sci. 328, 10 (2008).

  14. 14

    S. Yang, P. Tsai, E. S. Kooij, A. Prosperetti, H. J. W. Zandvliet, and D. Lohse, Langmuir 25, 1466 (2009).

  15. 15

    X. H. Zhang and W. Ducker, Langmuir 23, 12478 (2007).

  16. 16

    P. Janda, O. Frank, Z. Bastl, M. Klementová, H., Tarábková, and L., Kavan, Nanotechnology 21, 095707 (2010).

  17. 17

    Z. H. Wu, X. H. Zhang, X. D. Zhang, J. L. Sun, Y. M. Dong, and J. Hu, Chin. Sci. Bull. 52, 1913 (2007).

  18. 18

    X. H. Zhang, G. Li, N. Maeda, and J. Hu, Langmuir 22, 9238 (2006).

  19. 19

    L. Zhang, X. H. Zhang, C. Fan, Y. Zhang, and J. Hu, Langmuir 25, 8860 (2009).

  20. 20

    B. M. Borkent, S. de Beer, F. Mugele, and D. Lohse, Langmuir 26, 260 (2010).

  21. 21

    X. H. Zhang, N. Maeda, and J. Hu, J. Phys. Chem. B 112, 13671 (2008).

  22. 22

    L. Zhang, X. H. Zhang, Y. Zhang, J. Hu, and H. Fang, Soft Matter 6, 4515 (2010).

  23. 23

    X. H. Zhang, A. Kumar, and P. J. Scales, Langmuir 27, 2484 (2011).

  24. 24

    X. H. Zhang, N. Maeda, and V. S. J. Craig, Langmuir 22, 5025 (2006).

  25. 25

    Y. Wang, B. Bhushan, and X. Zhao, Langmuir 25, 9328 (2009).

  26. 26

    Z. H. Wu, X. H. Zhang, X. D. Zhang, G. Li, J. Sun, Y. Zhang, M. Li, and J. Hu, Surf. Interface Anal. 38, 990 (2006).

  27. 27

    M. Holmberg, A. Kühle, J. Garnæs, K. A. Mørch, and A. Boisen, Langmuir 19, 10510 (2003).

  28. 28

    H. Seo, M. Yoo, and S. Jeon, Langmuir 23, 1623 (2007).

  29. 29

    H. Seo, N. Jung, D. Lee, and S. Jeon, Colloids Surf., A 336, 99 (2009).

  30. 30

    X. H. Zhang, Phys. Chem. Chem. Phys. 10, 6842 (2008).

  31. 31

    B. Song, W. Walczyk, and H. Schönherr, Langmuir 27, 8223 (2011).

  32. 32

    J. Yang, J. Duan, D. Fornasiero, and J. Ralston, J. Phys. Chem. B 107, 6193 (2003).

  33. 33

    S. Darwich, K. Mougin, L. Vidal, E. Gnecco, and H. Haidara, Nanoscale 3, 1211 (2011).

  34. 34

    N. Ishida and H. Higashitani, Minerals Engineering 19, 719 (2006).

  35. 35

    X. H. Zhang and N. Maeda, J. Phys. Chem. C 115, 736 (2011).

  36. 36

    A. Szabó, M. Kotormán, I. Laczkó, and M. Simon, J. Mol. Catal. BEnzym. 41, 43 (2006).

  37. 37

    R. Liu, P. Qin, L. Wang, X. Zhao, Y. Liu, and X. Hao, J. Biochem. Mol. Toxicol. 24, 66 (2010).

  38. 38

    G. Liu, S. Xu, and Y. Qian, Acc. Chem. Res. 33, 457 (2000).

  39. 39

    P. M. Mendes, C. L. Yeung, and J. A. Preece, Nanoscale Res. Lett. 2, 373 (2007).

  40. 40

    E. Pişkin, Hacettepe J. Biol. Chem. 35, 157 (2007).

  41. 41

    L. G. Rosa and J. Liang, J. Phys.: Condens. Matter. 21, 483001 (2009).

  42. 42

    P. Klapetek, D. Necčas, A. Campbellová, A. Yacoot, and L. Coenders, Meas. Sci. Technol. 22, 025501 (2011).

  43. 43

    P. Klapetek, I. Ohlídal, D. Franta, A. Montaigne-Ramil, A. Bonanni, D. Stifter, and H. Sitter, Acta Phys. Slov. 53, 223 (2003).

  44. 44

    P. Klapetek and I. Ohlídal, Ultramicroscopy 94, 19 (2003).

  45. 45

    A. K. Wright and M. R. Thompson, Biophys. J. 15, 137 (1975).

  46. 46

    R. W. Pickersgill, G. W. Harris, and E. Garman, Acta Crystallogr., Sect. B: Struct. Sci. B48, 59 (1992).

  47. 47

    A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. Wiley, New York, 1997 p. 542.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolivosška, V., Gá, M., Hromadová, M. et al. Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces. Biointerphases 6, 164–170 (2011). https://doi.org/10.1116/1.3650300

Download citation