Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells

Abstract

Collecting information at the interface between living cells and artificial substrates is exceedingly difficult. The extracellular matrix (ECM) mediates all cell-substrate interactions, and its ordered, fibrillar constituents are organized with nanometer precision. The proceedings at this interface are highly dynamic and delicate. In order to understand factors governing biocompatibility or its counterpart antifouling, it is necessary to probe this interface without disrupting labels or fixation and with sufficient temporal resolution. Here the authors combine nonlinear optical spectroscopy (sumfrequency-generation) and microscopy (second-harmonic-generation), fluorescence microscopy, and quartz crystal microgravimetry with dissipation monitoring in a strategy to elucidate molecular ordering processes in the ECM of living cells. Artificially (fibronectin and collagen I) and naturally ordered ECM fibrils (zebrafish, Danio rerio) were subjected to nonlinear optical analysis and were found to be clearly distinguishable from the background signals of diffusive proteins in the ECM. The initial steps of fibril deposition and ordering were observed in vitro as early as 1 h after cell seeding. The ability to follow the first steps of cell-substrate interactions in spite of the low amount of material present at this interface is expected to prove useful for the assessment of biomedical and environmental interfaces.

References

  1. 1

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

  2. 2

    B. K. Canales, L. Higgins, T. Markowski, L. Anderson, Q. A. Li, and M. Monga, J. Endourol. 23, 1437 (2009).

  3. 3

    B. N. Brown, C. A. Barnes, R. T. Kasick, R. Michel, T. W. Gilbert, D. Beer-Stolz, D. G. Castner, B. D. Ratner, and S. F. Badylak, Biomaterials 31, 428 (2010).

  4. 4

    C. A. Barnes, J. Brison, R. Michel, B. N. Brown, D. G. Castner, S. F. Badylak, and B. D. Ratner, Biomaterials 32, 137 (2011).

  5. 5

    M. J. P. Biggs, R. G. Richards, N. Gadegaard, C. D. W. Wilkinson, and M. J. Dalby, J. Orthop. Res. 25, 273 (2007).

  6. 6

    M. J. P. Biggs, R. G. Richards, and M. J. Dalby, Nanomedicine 6, 619 (2010).

  7. 7

    E. Lamers, X. F. Walboomers, M. Domanski, J. te Riet, F. C. M. J. M. van Delft, R. Luttge, L. A. J. A. Winnubst, H. J. G. E. Gardeniers, and J. A. Jansen, Biomaterials 31, 3307 (2010).

  8. 8

    K. von der Mark, J. Park, S. Bauer, and P. Schmuki, Cell Tissue Res. 339, 131 (2010).

  9. 9

    C. T. Brighton, J. R. Fisher, S. E. Levine, J. R. Corsetti, T. Reilly, A. S. Landsman, J. L. Williams, and L. E. Thibault, J. Bone Jt. Surg., Am. Vol. 78, 1337 (1996).

  10. 10

    P. F. Davies, K. A. Barbee, M. V. Volin, A. Robotewskyj, J. Chen, L. Joseph, M. L. Griem, M.N. Wernick, E. Jacobs, D. C. Polacek, N. DePaola, and A. I. Barakat, Annu. Rev. Physiol. 59, 527 (1997).

  11. 11

    C. Zhong, M. Chrzanowska-Wodnicka, J. Brown, A. Shaub, A. M. Belkin, and K. Burridge, J. Cell Biol. 141, 539 (1998).

  12. 12

    I. Wierzbicka-Patynowski and J. E. Schwarzbauer, J. Cell Sci. 116, 3269 (2003).

  13. 13

    Y. Mao and J. E. Schwarzbauer, Matrix Biol. 24, 389 (2005).

  14. 14

    L. B. Chen, A. Murray, R. A. Segal, A. Bushnell, and M. L. Walsh, Cell 14, 377 (1978).

  15. 15

    J. Engel, E. Odermatt, A. Engel, J. A. Madri, H. Furthmayr, H. Rohde, and R. Timpl, J. Mol. Biol. 150, 97 (1981).

  16. 16

    P. J. McKeown-Longo and D. F. Mosher, J. Cell Biol. 97, 466 (1983).

  17. 17

    D. M. Mann, P. J. McKeown-Longo, and A. J. Millis, J. Biol. Chem. 263, 2756 (1988).

  18. 18

    J. E. Wagenseil and R. P. Mecham, Birth Defects Res. C 81, 229 (2007).

  19. 19

    P. Singh, C. Carraher, and J. E. Schwarzbauer, Annu. Rev. Cell Dev. Biol. 26, 397 (2010).

  20. 20

    H. C. Hsia, M. R. Nair, R. C. Mintz, and S. A. Corbett, Plast. Reconstr. Surg. 127, 2312 (2011).

  21. 21

    E. G. Hayman and E. Ruoslahti, J. Cell Biol. 83, 255 (1979).

  22. 22

    J. Sottile and D. C. Hocking, Mol. Biol. Cell 13, 3546 (2002).

  23. 23

    P. P. Girard, E. A. Cavalcanti-Adam, R. Kemkemer, and J. P. Spatz, Soft Matter 3, 307 (2007).

  24. 24

    R. M. Williams, W. R. Zipfel, and W. W. Webb, Biophys. J. 88, 1377 (2005).

  25. 25

    K. Schenke-Layland, Journal of Biophotonics 1, 451 (2008).

  26. 26

    X. Han, R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown, Opt. Express 16, 1846 (2008).

  27. 27

    R. Cicchi, S. Sestini, V. De Giorgi, D. Massi, T. Lotti, and F. S. Pavone, Journal of Biophotonics 1, 62 (2008).

  28. 28

    K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. T. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, and V. M. Weaver, Cell 139, 891 (2009).

  29. 29

    G. L. Richmond, Chem. Rev. 102, 2693 (2002).

  30. 30

    M. Raschke and Y. Shen, Curr. Opin. Solid State Mater. Sci. 8, 343 (2004).

  31. 31

    M. A. Leich and G. L. Richmond, Faraday Discuss. 129, 1 (2005).

  32. 32

    A. Hopkins, C. McFearin, and G. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005).

  33. 33

    S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, Chem. Rev. 106, 1155 (2006).

  34. 34

    Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006).

  35. 35

    A. B. Sugiharto, C. Johnson, H. de Aguiar, L. Alloatti, and S. Roke, Appl. Phys. B 91, 315 (2008).

  36. 36

    H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Herna'ndez, X. Chen, and C. Y. Tang, Phys. Chem. Chem. Phys. 11, 5538 (2009).

  37. 37

    F. M. Geiger, Annu. Rev. Phys. Chem. 60, 61 (2009).

  38. 38

    S. Roke, ChemPhysChem 10, 1380 (2009).

  39. 39

    C. Tian and Y. Shen, Chem. Phys. Lett. 470, 1 (2009).

  40. 40

    D. Verreault, V. Kurz, C. Howell, and P. Koelsch, Rev. Sci. Instrum. 81, 063111 (2010).

  41. 41

    J. Kim, K. C. Chou, and G. A. Somorjai, J. Phys. Chem. B 106, 9198 (2002).

  42. 42

    O. Mermut, D. C. Phillips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).

  43. 43

    X. Chen and Z. Chen, Biochim. Biophys. Acta 1758, 1257 (2006).

  44. 44

    D. Phillips, R. York, O. Mermut, K. McCrea, R. Ward, and G. Somorjai, J. Phys. Chem. C 111, 255 (2007).

  45. 45

    R. York, O. Mermut, D. Phillips, K. McCrea, R. Ward, and G. Somorjai, J. Phys. Chem. C 111, 8866 (2007).

  46. 46

    A. B. Sugiharto, C. M. Johnson, I. E. Dunlop, and S. Roke, J. Phys. Chem. C 221, 7531 (2008).

  47. 47

    R. L. York, G. J. Holinga, D. R. Guyer, K. R. McCrea, R. S. Ward, and G. A. Somorjai, Appl. Spectrosc. 62, 937 (2008).

  48. 48

    T. Weidner, N. F. Breen, G. P. Drobny, and D. G. Castner, J. Phys. Chem. B 113, 15423 (2009).

  49. 49

    R. L. York, G. J. Holinga, and G. A. Somorjai, Langmuir 25, 9369 (2009).

  50. 50

    J. Fick, T. Wolfram, F. Belz, and S. Roke, Langmuir 26, 1051 (2010).

  51. 51

    T. Weidner, N. F. Breen, K. Li, G. P. Drobny, and D. G. Castner, Proc. Natl. Acad. Sci. U.S.A. 107, 13288 (2010).

  52. 52

    G. J. Holinga, R. L. York, R. M. Onorato, C. M. Thompson, N. E. Webb, A. P. Yoon, and G. A. Somorjai, J. Am. Chem. Soc. 133, 6243 (2011).

  53. 53

    J. Kim and P. S. Cremer, ChemPhysChem 2, 543 (2001).

  54. 54

    G. Kim, M. Gurau, J. Kim, and P. S. Cremer, Langmuir 18, 2807 (2002).

  55. 55

    Z. Chen, R. Ward, Y. Tian, F. Malizia, D. H. Gracias, Y. R. Shen, and G. A. Somorjai, J. Biomed. Mater. Res. 62, 254 (2002).

  56. 56

    J. Wang, S. M. Buck, M. A. Even, and Z. Chen, J. Am. Chem. Soc. 124, 13302 (2002).

  57. 57

    J. Wang, S. M. Buck, and Z. Chen, J. Phys. Chem. B 106, 11666 (2002).

  58. 58

    T. S. Koffas, J. Kim, C. C. Lawrence, and G. A. Somorjai, Langmuir 19, 3563 (2003).

  59. 59

    J. Wang, M. L. Clarke, Y. Zhang, X. Chen, and Z. Chen, Langmuir 19, 7862 (2003).

  60. 60

    A. W. Doyle, J. Fick, M. Himmelhaus, W. Eck, I. Graziani, I. Prudovsky, M. Grunze, T. Maciag, and D. J. Neivandt, Langmuir 20, 8961 (2004).

  61. 61

    L. Dreesen, Y. Sartenaer, C. Humbert, A. A. Mani, C. Méthivier, C.-M. Pradier, P. A. Thiry, and A. Peremans, ChemPhysChem 5, 1719 (2004).

  62. 62

    J. Kim, T. S. Koffas, C. C. Lawrence, and G. A. Somorjai, Langmuir 20, 4640 (2004).

  63. 63

    L. Dreesen, C. Humbert, Y. Sartenaer, Y. Caudano, C. Volcke, A. A. Mani, A. Peremans, P. A. Thiry, S. Hanique, and J.-M. Frère, Langmuir 20, 7201 (2004).

  64. 64

    Z. Pászti, J. Wang, M. L. Clarke, and Z. Chen, J. Phys. Chem. B 108, 7779 (2004).

  65. 65

    J. Wang, Z. Paszti, M. A. Even, and Z. Chen, J. Phys. Chem. B 108, 3625 (2004).

  66. 66

    J. Wang, X. Chen, M. L. Clarke, and Z. Chen, Proc. Natl. Acad. Sci. U.S.A. 102, 4978 (2005).

  67. 67

    J. Wang, M. Clarke, X. Chen, M. Even, W. Johnson, and Z. Chen, Surf. Sci. 587, 1 (2005).

  68. 68

    I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, Biophys. J. 93, 4433 (2007).

  69. 69

    X. Chen, A. P. Boughton, J. J. G. Tesmer, and Z. Chen, J. Am. Chem. Soc. 129, 12658 (2007).

  70. 70

    J. Wang, S.-H. Lee, and Z. Chen, J. Phys. Chem. B 112, 2281 (2008).

  71. 71

    S. Ye, K. T. Nguyen, S. V. Le Clair, and Z. Chen, J. Struct. Biol. 168, 61 (2009).

  72. 72

    S. Le Clair, K. Nguyen, and Z. Chen, J. Adhes. 85, 484 (2009).

  73. 73

    L. Baugh, T. Weidner, J. E. Baio, P.-C. T. Nguyen, L. J. Gamble, P. S. Stayton, and D. G. Castner, Langmuir 26, 16434 (2010).

  74. 74

    L. Fu, J. Liu, and E. C. Y. Yan, J. Am. Chem. Soc. 133, 8094 (2011).

  75. 75

    Y. Sartenaer, G. Tourillon, L. Dreesen, D. Lis, A. A. Mani, P. A. Thiry, and A. Peremans, Biosens. Bioelectron. 22, 2179 (2007).

  76. 76

    G. Y. Stokes, J. M. Gibbs-Davis, F. C. Boman, B. R. Stepp, A. G. Condie, S. T. Nguyen, and F. M. Geiger, J. Am. Chem. Soc. 129, 7492 (2007).

  77. 77

    H. Asanuma, H. Noguchi, K. Uosaki, and H.-Z. Yu, J. Am. Chem. Soc. 130, 8016 (2008).

  78. 78

    C. Howell, R. Schmidt, V. Kurz, and P. Koelsch, BioInterphases 3, FC47 (2008).

  79. 79

    S. R. Walter and F. M. Geiger, The Journal of Physical Chemistry Letters 1, 9 (2010).

  80. 80

    C. Howell, M.-O. Diesner, M. Grunze, and P. Koelsch, Langmuir 24, 13819 (2008).

  81. 81

    M.-O. Diesner, C. Howell, V. Kurz, D. Verreault, and P. Koelsch, The Journal of Physical Chemistry Letters 1, 2339 (2010).

  82. 82

    E. Bulard, Z. Guo, W. Zheng, H. Dubost, M.-P. Fontaine-Aupart, M. N. Bellon-Fontaine, J.-M. Herry, R. Briandet, and B. Bourguignon, Langmuir 27, 4928 (2011).

  83. 83

    P. Kaiser and J. P. Spatz, Soft Matter 6, 113 (2010).

  84. 84

    L. Buttafoco, N. G. Kolkman, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J. Feijen, Biomaterials 27, 724 (2006).

  85. 85

    M. Rodahl, F. Hoöök, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 229 (1997).

  86. 86

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

  87. 87

    M. L. Smith, D. Gourdon, W. C. Little, K. E. Kubow, R. A. Eguiluz, S. Luna-Morris, and V. Vogel, PLoS Biol. 5, e268 (2007).

  88. 88

    J. Ulmer, B. Geiger, and J. P. Spatz, Soft Matter 4, 1998 (2008).

  89. 89

    N. C. Bird and P. M. Mabee, Dev. Dyn. 228, 337 (2003).

  90. 90

    K. D. Poss, M. T. Keating, and A. Nechiporuk, Dev. Dyn. 226, 202 (2003).

  91. 91

    J. Mahamid, A. Sharir, L. Addadi, and S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 105, 12748 (2008).

  92. 92

    T. J. Su, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

  93. 93

    J. Kim and G. A. Somorjai, J. Am. Chem. Soc. 125, 3150 (2003).

  94. 94

    R. R. Siegel, P. Harder, R. Dahint, M. Grunze, F. Josse, M. Mrksich, and G. M. Whitesides, Anal. Chem. 69, 3321 (1997).

  95. 95

    J. Huang, S. V. Grater, F. Corbellini, S. Rinck, E. Bock, R. Kemkemer, H. Kessler, J. Ding, and J. P. Spatz, Nano Lett. 9, 1111 (2009).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diesner, M., Welle, A., Kazanci, M. et al. In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 6, 171–179 (2011). https://doi.org/10.1116/1.3651142

Download citation