Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells

Abstract

Collecting information at the interface between living cells and artificial substrates is exceedingly difficult. The extracellular matrix (ECM) mediates all cell-substrate interactions, and its ordered, fibrillar constituents are organized with nanometer precision. The proceedings at this interface are highly dynamic and delicate. In order to understand factors governing biocompatibility or its counterpart antifouling, it is necessary to probe this interface without disrupting labels or fixation and with sufficient temporal resolution. Here the authors combine nonlinear optical spectroscopy (sumfrequency-generation) and microscopy (second-harmonic-generation), fluorescence microscopy, and quartz crystal microgravimetry with dissipation monitoring in a strategy to elucidate molecular ordering processes in the ECM of living cells. Artificially (fibronectin and collagen I) and naturally ordered ECM fibrils (zebrafish, Danio rerio) were subjected to nonlinear optical analysis and were found to be clearly distinguishable from the background signals of diffusive proteins in the ECM. The initial steps of fibril deposition and ordering were observed in vitro as early as 1 h after cell seeding. The ability to follow the first steps of cell-substrate interactions in spite of the low amount of material present at this interface is expected to prove useful for the assessment of biomedical and environmental interfaces.

References

  1. 1

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    CAS  Article  Google Scholar 

  2. 2

    B. K. Canales, L. Higgins, T. Markowski, L. Anderson, Q. A. Li, and M. Monga, J. Endourol. 23, 1437 (2009).

    Article  Google Scholar 

  3. 3

    B. N. Brown, C. A. Barnes, R. T. Kasick, R. Michel, T. W. Gilbert, D. Beer-Stolz, D. G. Castner, B. D. Ratner, and S. F. Badylak, Biomaterials 31, 428 (2010).

    CAS  Article  Google Scholar 

  4. 4

    C. A. Barnes, J. Brison, R. Michel, B. N. Brown, D. G. Castner, S. F. Badylak, and B. D. Ratner, Biomaterials 32, 137 (2011).

    CAS  Article  Google Scholar 

  5. 5

    M. J. P. Biggs, R. G. Richards, N. Gadegaard, C. D. W. Wilkinson, and M. J. Dalby, J. Orthop. Res. 25, 273 (2007).

    CAS  Article  Google Scholar 

  6. 6

    M. J. P. Biggs, R. G. Richards, and M. J. Dalby, Nanomedicine 6, 619 (2010).

    CAS  Google Scholar 

  7. 7

    E. Lamers, X. F. Walboomers, M. Domanski, J. te Riet, F. C. M. J. M. van Delft, R. Luttge, L. A. J. A. Winnubst, H. J. G. E. Gardeniers, and J. A. Jansen, Biomaterials 31, 3307 (2010).

    CAS  Article  Google Scholar 

  8. 8

    K. von der Mark, J. Park, S. Bauer, and P. Schmuki, Cell Tissue Res. 339, 131 (2010).

    Article  Google Scholar 

  9. 9

    C. T. Brighton, J. R. Fisher, S. E. Levine, J. R. Corsetti, T. Reilly, A. S. Landsman, J. L. Williams, and L. E. Thibault, J. Bone Jt. Surg., Am. Vol. 78, 1337 (1996).

    CAS  Google Scholar 

  10. 10

    P. F. Davies, K. A. Barbee, M. V. Volin, A. Robotewskyj, J. Chen, L. Joseph, M. L. Griem, M.N. Wernick, E. Jacobs, D. C. Polacek, N. DePaola, and A. I. Barakat, Annu. Rev. Physiol. 59, 527 (1997).

    CAS  Article  Google Scholar 

  11. 11

    C. Zhong, M. Chrzanowska-Wodnicka, J. Brown, A. Shaub, A. M. Belkin, and K. Burridge, J. Cell Biol. 141, 539 (1998).

    CAS  Article  Google Scholar 

  12. 12

    I. Wierzbicka-Patynowski and J. E. Schwarzbauer, J. Cell Sci. 116, 3269 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Y. Mao and J. E. Schwarzbauer, Matrix Biol. 24, 389 (2005).

    CAS  Article  Google Scholar 

  14. 14

    L. B. Chen, A. Murray, R. A. Segal, A. Bushnell, and M. L. Walsh, Cell 14, 377 (1978).

    CAS  Article  Google Scholar 

  15. 15

    J. Engel, E. Odermatt, A. Engel, J. A. Madri, H. Furthmayr, H. Rohde, and R. Timpl, J. Mol. Biol. 150, 97 (1981).

    CAS  Article  Google Scholar 

  16. 16

    P. J. McKeown-Longo and D. F. Mosher, J. Cell Biol. 97, 466 (1983).

    CAS  Article  Google Scholar 

  17. 17

    D. M. Mann, P. J. McKeown-Longo, and A. J. Millis, J. Biol. Chem. 263, 2756 (1988).

    CAS  Google Scholar 

  18. 18

    J. E. Wagenseil and R. P. Mecham, Birth Defects Res. C 81, 229 (2007).

    CAS  Article  Google Scholar 

  19. 19

    P. Singh, C. Carraher, and J. E. Schwarzbauer, Annu. Rev. Cell Dev. Biol. 26, 397 (2010).

    CAS  Article  Google Scholar 

  20. 20

    H. C. Hsia, M. R. Nair, R. C. Mintz, and S. A. Corbett, Plast. Reconstr. Surg. 127, 2312 (2011).

    CAS  Article  Google Scholar 

  21. 21

    E. G. Hayman and E. Ruoslahti, J. Cell Biol. 83, 255 (1979).

    CAS  Article  Google Scholar 

  22. 22

    J. Sottile and D. C. Hocking, Mol. Biol. Cell 13, 3546 (2002).

    CAS  Article  Google Scholar 

  23. 23

    P. P. Girard, E. A. Cavalcanti-Adam, R. Kemkemer, and J. P. Spatz, Soft Matter 3, 307 (2007).

    CAS  Article  Google Scholar 

  24. 24

    R. M. Williams, W. R. Zipfel, and W. W. Webb, Biophys. J. 88, 1377 (2005).

    CAS  Article  Google Scholar 

  25. 25

    K. Schenke-Layland, Journal of Biophotonics 1, 451 (2008).

    CAS  Article  Google Scholar 

  26. 26

    X. Han, R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown, Opt. Express 16, 1846 (2008).

    CAS  Article  Google Scholar 

  27. 27

    R. Cicchi, S. Sestini, V. De Giorgi, D. Massi, T. Lotti, and F. S. Pavone, Journal of Biophotonics 1, 62 (2008).

    CAS  Article  Google Scholar 

  28. 28

    K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. T. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, and V. M. Weaver, Cell 139, 891 (2009).

    CAS  Article  Google Scholar 

  29. 29

    G. L. Richmond, Chem. Rev. 102, 2693 (2002).

    CAS  Article  Google Scholar 

  30. 30

    M. Raschke and Y. Shen, Curr. Opin. Solid State Mater. Sci. 8, 343 (2004).

    CAS  Article  Google Scholar 

  31. 31

    M. A. Leich and G. L. Richmond, Faraday Discuss. 129, 1 (2005).

    CAS  Article  Google Scholar 

  32. 32

    A. Hopkins, C. McFearin, and G. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005).

    CAS  Article  Google Scholar 

  33. 33

    S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, Chem. Rev. 106, 1155 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006).

    CAS  Article  Google Scholar 

  35. 35

    A. B. Sugiharto, C. Johnson, H. de Aguiar, L. Alloatti, and S. Roke, Appl. Phys. B 91, 315 (2008).

    CAS  Article  Google Scholar 

  36. 36

    H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Herna'ndez, X. Chen, and C. Y. Tang, Phys. Chem. Chem. Phys. 11, 5538 (2009).

    CAS  Article  Google Scholar 

  37. 37

    F. M. Geiger, Annu. Rev. Phys. Chem. 60, 61 (2009).

    CAS  Article  Google Scholar 

  38. 38

    S. Roke, ChemPhysChem 10, 1380 (2009).

    CAS  Article  Google Scholar 

  39. 39

    C. Tian and Y. Shen, Chem. Phys. Lett. 470, 1 (2009).

    CAS  Article  Google Scholar 

  40. 40

    D. Verreault, V. Kurz, C. Howell, and P. Koelsch, Rev. Sci. Instrum. 81, 063111 (2010).

    Article  Google Scholar 

  41. 41

    J. Kim, K. C. Chou, and G. A. Somorjai, J. Phys. Chem. B 106, 9198 (2002).

    CAS  Article  Google Scholar 

  42. 42

    O. Mermut, D. C. Phillips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).

    CAS  Article  Google Scholar 

  43. 43

    X. Chen and Z. Chen, Biochim. Biophys. Acta 1758, 1257 (2006).

    CAS  Article  Google Scholar 

  44. 44

    D. Phillips, R. York, O. Mermut, K. McCrea, R. Ward, and G. Somorjai, J. Phys. Chem. C 111, 255 (2007).

    CAS  Article  Google Scholar 

  45. 45

    R. York, O. Mermut, D. Phillips, K. McCrea, R. Ward, and G. Somorjai, J. Phys. Chem. C 111, 8866 (2007).

    CAS  Article  Google Scholar 

  46. 46

    A. B. Sugiharto, C. M. Johnson, I. E. Dunlop, and S. Roke, J. Phys. Chem. C 221, 7531 (2008).

    Article  Google Scholar 

  47. 47

    R. L. York, G. J. Holinga, D. R. Guyer, K. R. McCrea, R. S. Ward, and G. A. Somorjai, Appl. Spectrosc. 62, 937 (2008).

    CAS  Article  Google Scholar 

  48. 48

    T. Weidner, N. F. Breen, G. P. Drobny, and D. G. Castner, J. Phys. Chem. B 113, 15423 (2009).

    CAS  Article  Google Scholar 

  49. 49

    R. L. York, G. J. Holinga, and G. A. Somorjai, Langmuir 25, 9369 (2009).

    CAS  Article  Google Scholar 

  50. 50

    J. Fick, T. Wolfram, F. Belz, and S. Roke, Langmuir 26, 1051 (2010).

    CAS  Article  Google Scholar 

  51. 51

    T. Weidner, N. F. Breen, K. Li, G. P. Drobny, and D. G. Castner, Proc. Natl. Acad. Sci. U.S.A. 107, 13288 (2010).

    CAS  Article  Google Scholar 

  52. 52

    G. J. Holinga, R. L. York, R. M. Onorato, C. M. Thompson, N. E. Webb, A. P. Yoon, and G. A. Somorjai, J. Am. Chem. Soc. 133, 6243 (2011).

    CAS  Article  Google Scholar 

  53. 53

    J. Kim and P. S. Cremer, ChemPhysChem 2, 543 (2001).

    CAS  Article  Google Scholar 

  54. 54

    G. Kim, M. Gurau, J. Kim, and P. S. Cremer, Langmuir 18, 2807 (2002).

    CAS  Article  Google Scholar 

  55. 55

    Z. Chen, R. Ward, Y. Tian, F. Malizia, D. H. Gracias, Y. R. Shen, and G. A. Somorjai, J. Biomed. Mater. Res. 62, 254 (2002).

    CAS  Article  Google Scholar 

  56. 56

    J. Wang, S. M. Buck, M. A. Even, and Z. Chen, J. Am. Chem. Soc. 124, 13302 (2002).

    CAS  Article  Google Scholar 

  57. 57

    J. Wang, S. M. Buck, and Z. Chen, J. Phys. Chem. B 106, 11666 (2002).

    CAS  Article  Google Scholar 

  58. 58

    T. S. Koffas, J. Kim, C. C. Lawrence, and G. A. Somorjai, Langmuir 19, 3563 (2003).

    CAS  Article  Google Scholar 

  59. 59

    J. Wang, M. L. Clarke, Y. Zhang, X. Chen, and Z. Chen, Langmuir 19, 7862 (2003).

    CAS  Article  Google Scholar 

  60. 60

    A. W. Doyle, J. Fick, M. Himmelhaus, W. Eck, I. Graziani, I. Prudovsky, M. Grunze, T. Maciag, and D. J. Neivandt, Langmuir 20, 8961 (2004).

    CAS  Article  Google Scholar 

  61. 61

    L. Dreesen, Y. Sartenaer, C. Humbert, A. A. Mani, C. Méthivier, C.-M. Pradier, P. A. Thiry, and A. Peremans, ChemPhysChem 5, 1719 (2004).

    CAS  Article  Google Scholar 

  62. 62

    J. Kim, T. S. Koffas, C. C. Lawrence, and G. A. Somorjai, Langmuir 20, 4640 (2004).

    CAS  Article  Google Scholar 

  63. 63

    L. Dreesen, C. Humbert, Y. Sartenaer, Y. Caudano, C. Volcke, A. A. Mani, A. Peremans, P. A. Thiry, S. Hanique, and J.-M. Frère, Langmuir 20, 7201 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Z. Pászti, J. Wang, M. L. Clarke, and Z. Chen, J. Phys. Chem. B 108, 7779 (2004).

    Google Scholar 

  65. 65

    J. Wang, Z. Paszti, M. A. Even, and Z. Chen, J. Phys. Chem. B 108, 3625 (2004).

    CAS  Article  Google Scholar 

  66. 66

    J. Wang, X. Chen, M. L. Clarke, and Z. Chen, Proc. Natl. Acad. Sci. U.S.A. 102, 4978 (2005).

    CAS  Article  Google Scholar 

  67. 67

    J. Wang, M. Clarke, X. Chen, M. Even, W. Johnson, and Z. Chen, Surf. Sci. 587, 1 (2005).

    CAS  Article  Google Scholar 

  68. 68

    I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, Biophys. J. 93, 4433 (2007).

    CAS  Article  Google Scholar 

  69. 69

    X. Chen, A. P. Boughton, J. J. G. Tesmer, and Z. Chen, J. Am. Chem. Soc. 129, 12658 (2007).

    CAS  Article  Google Scholar 

  70. 70

    J. Wang, S.-H. Lee, and Z. Chen, J. Phys. Chem. B 112, 2281 (2008).

    CAS  Article  Google Scholar 

  71. 71

    S. Ye, K. T. Nguyen, S. V. Le Clair, and Z. Chen, J. Struct. Biol. 168, 61 (2009).

    CAS  Article  Google Scholar 

  72. 72

    S. Le Clair, K. Nguyen, and Z. Chen, J. Adhes. 85, 484 (2009).

    Article  Google Scholar 

  73. 73

    L. Baugh, T. Weidner, J. E. Baio, P.-C. T. Nguyen, L. J. Gamble, P. S. Stayton, and D. G. Castner, Langmuir 26, 16434 (2010).

    CAS  Article  Google Scholar 

  74. 74

    L. Fu, J. Liu, and E. C. Y. Yan, J. Am. Chem. Soc. 133, 8094 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Y. Sartenaer, G. Tourillon, L. Dreesen, D. Lis, A. A. Mani, P. A. Thiry, and A. Peremans, Biosens. Bioelectron. 22, 2179 (2007).

    CAS  Article  Google Scholar 

  76. 76

    G. Y. Stokes, J. M. Gibbs-Davis, F. C. Boman, B. R. Stepp, A. G. Condie, S. T. Nguyen, and F. M. Geiger, J. Am. Chem. Soc. 129, 7492 (2007).

    CAS  Article  Google Scholar 

  77. 77

    H. Asanuma, H. Noguchi, K. Uosaki, and H.-Z. Yu, J. Am. Chem. Soc. 130, 8016 (2008).

    CAS  Article  Google Scholar 

  78. 78

    C. Howell, R. Schmidt, V. Kurz, and P. Koelsch, BioInterphases 3, FC47 (2008).

    Article  Google Scholar 

  79. 79

    S. R. Walter and F. M. Geiger, The Journal of Physical Chemistry Letters 1, 9 (2010).

    CAS  Article  Google Scholar 

  80. 80

    C. Howell, M.-O. Diesner, M. Grunze, and P. Koelsch, Langmuir 24, 13819 (2008).

    CAS  Article  Google Scholar 

  81. 81

    M.-O. Diesner, C. Howell, V. Kurz, D. Verreault, and P. Koelsch, The Journal of Physical Chemistry Letters 1, 2339 (2010).

    CAS  Article  Google Scholar 

  82. 82

    E. Bulard, Z. Guo, W. Zheng, H. Dubost, M.-P. Fontaine-Aupart, M. N. Bellon-Fontaine, J.-M. Herry, R. Briandet, and B. Bourguignon, Langmuir 27, 4928 (2011).

    CAS  Article  Google Scholar 

  83. 83

    P. Kaiser and J. P. Spatz, Soft Matter 6, 113 (2010).

    CAS  Article  Google Scholar 

  84. 84

    L. Buttafoco, N. G. Kolkman, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J. Feijen, Biomaterials 27, 724 (2006).

    CAS  Article  Google Scholar 

  85. 85

    M. Rodahl, F. Hoöök, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 229 (1997).

    Google Scholar 

  86. 86

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

    CAS  Article  Google Scholar 

  87. 87

    M. L. Smith, D. Gourdon, W. C. Little, K. E. Kubow, R. A. Eguiluz, S. Luna-Morris, and V. Vogel, PLoS Biol. 5, e268 (2007).

    Article  Google Scholar 

  88. 88

    J. Ulmer, B. Geiger, and J. P. Spatz, Soft Matter 4, 1998 (2008).

    CAS  Article  Google Scholar 

  89. 89

    N. C. Bird and P. M. Mabee, Dev. Dyn. 228, 337 (2003).

    Article  Google Scholar 

  90. 90

    K. D. Poss, M. T. Keating, and A. Nechiporuk, Dev. Dyn. 226, 202 (2003).

    Article  Google Scholar 

  91. 91

    J. Mahamid, A. Sharir, L. Addadi, and S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 105, 12748 (2008).

    CAS  Article  Google Scholar 

  92. 92

    T. J. Su, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

    CAS  Article  Google Scholar 

  93. 93

    J. Kim and G. A. Somorjai, J. Am. Chem. Soc. 125, 3150 (2003).

    CAS  Article  Google Scholar 

  94. 94

    R. R. Siegel, P. Harder, R. Dahint, M. Grunze, F. Josse, M. Mrksich, and G. M. Whitesides, Anal. Chem. 69, 3321 (1997).

    CAS  Article  Google Scholar 

  95. 95

    J. Huang, S. V. Grater, F. Corbellini, S. Rinck, E. Bock, R. Kemkemer, H. Kessler, J. Ding, and J. P. Spatz, Nano Lett. 9, 1111 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diesner, M., Welle, A., Kazanci, M. et al. In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 6, 171–179 (2011). https://doi.org/10.1116/1.3651142

Download citation