Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Optimizing interfacial features to regulate neural progenitor cells using polyelectrolyte multilayers and brain derived neurotrophic factor

Abstract

The development of biomaterials with controllable interfacial features which have the capability to instruct cellular behavior are required to produce functional scaffolds for the treatment of spinal cord injury (SCI). Here, poly-ε-caprolactone surfaces were biofunctionalized via layer-by-layer (LbL) deposition. The polyelectrolytes employed in this LbL technique were heparin and poly-L-lysine (PLL), the latter being chosen to improve cell adhesion and the subsequent cellular function of in vitrocultured neural progenitor cells. Material characterization results confirmed the deposition of well structured multilayers. Cell culture studies revealed significant differences in the cellular response to these adhesive/nonadhesive (PLL/heparin) polyelectrolyte multilayer (PEM)surfaces, with neurite outgrowth being significantly promoted on the PLL terminating layers. In addition, brain derived neurotrophic factor (BDNF) was adsorbed onto the LbL surfaces. This combined chemical and biological effect was then characterized in terms of neurite length along with the full length/truncated isoform 1 tyrosine kinase receptor (TrkB-FL/TrkB-T1) and growth associated protein-43 mRNA levels. Here, the authors report the differential effect of adsorbed and soluble BDNF of different concentrations. Adsorbed BDNF promoted neurite outgrowth and led to elevated, sustained TrkB mRNA levels. These findings highlight the potential of PEM biofunctionalized surfaces with integrated chemical and neurotrophin supportive cues to overcome SCI inhibitory environments and to promote regeneration.

References

  1. 1

    M. T. Fitch and J. Silver, Exp. Neurol. 209, 294 (2008).

  2. 2

    V. Kottis, P. Thibault, D. Mikol, Z.-C. Xiao, R. Zhang, P. Dergham, and P. E. Braun, J. Neurochem. 82, 1566 (2002).

  3. 3

    J. W. Fawcett, Spinal Cord 36, 811 (1998).

  4. 4

    S. M. Willerth and S. E. Sakiyama-Elbert, Adv. Drug Delivery Rev. 60, 263 (2008).

  5. 5

    F. M. Bareyre, J. Neurol. Sci. 265, 63 (2008).

  6. 6

    H. Tabesh, G. Amoabediny, N. S. Nik, M. Heydari, M. Yosefifard, S. O. R. Siadat, and K. Mottaghy, Neurochem. Int. 54, 73 (2009).

  7. 7

    D. R. Nisbet, S. Pattanawong, N. E. Ritchie, W. Shen, D. I. Finkelstein, M. K. Horne, and J. S. Forsythe, J. Neural Eng. 4, 35 (2007).

  8. 8

    D. R. Nisbet, K. E. Crompton, M. K. Horne, D. I. Finkelstein, and J. S. Forsythe, J. Biomed. Mater. Res., Part B: Appl. Biomater. 87B, 251 (2008).

  9. 9

    S. Woerly, E. Pinet, L. de Robertis, D. Van Diep, and M. Bousmina, Biomaterials 22, 1095 (2001).

  10. 10

    D. R. Nisbet, L. M. Y. Yu, T. Zahir, J. S. Forsythe, and M. S. Shoichet, J. Biomater. Sci., Polym. Ed. 19, 623 (2008).

  11. 11

    H. Nomura, C. H. Tator, and M. S. Shoichet, J. Neurotrauma 23, 496 (2006).

  12. 12

    C. Boura, P. Menu, E. Payan, C. Picart, J. C. Voegel, S. Muller, and J. F. L. Richert, P. Lavalle, E. Payan, X. Z. Shu, G. D. Prestwich, J. F. Stoltz, P. Schaaf, J. C. Voegel, and C. Picart, Langmuir 20, 448 (2004).

  13. 14

    Y. Gong, Y. Zhu, Y. Liu, Z. Ma, C. Gao, and J. Shen, Acta Biomater. 3, 677 (2007).

  14. 15

    S. Ahmed, B. A. Reynolds, and S. Weiss, J. Neurosci. 15, 5765 (1995).

  15. 17

    S. S. Shiratori and M. F. Rubner, Macromolecules 33, 4213 (2000).

  16. 18

    S. Boddohi, C. E. Killingsworth, and M. J. Kipper, Biomacromolecules 9, 2021 (2008).

  17. 19

    L. Richert, A. J. Engler, D. E. Discher, and C. Picart, Biomacromolecules 5, 1908 (2004).

  18. 20

    C. B. Bucur, Z. Sui, and J. B. Schlenoff, J. Am. Chem. Soc. 128, 13690 (2006).

  19. 21

    B. Schoeler, E. Poptoshev, and F. Caruso, Macromolecules 36, 5258 (2003).

  20. 22

    P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, Macromol. Rapid Commun. 21, 319 (2000).

  21. 23

    J. Almodovar, S. Bacon, J. Gogolski, J. D. Kisiday, and M. J. Kipper, Biomacromolecules 11, 2629 (2010).

  22. 24

    C. Picart, P. Lavalle, P. Hubert, F. J. G. Cuisinier, G. Decher, P. Schaaf, and J. C. Voegel, Langmuir 17, 7414 (2001).

  23. 25

    M. Houska, E. Brynda, and K. Bohat, J. Colloid Interface Sci. 273, 140 (2004).

  24. 26

    H. Min, E. S. Eric, T. Charlotte, T. Jasmine, and R. H. Vincent, Tissue Eng. 6, 585 (2000).

  25. 27

    D. R. Nisbet, D. Moses, T. R. Gengenbach, J. S. Forsythe, D. I. Finkelstein, and M. K. Horne, J. Biomed. Mater. Res. Part A 89A, 24 (2009).

  26. 28

    E. Young, Thromb. Res. 122, 743 (2008).

  27. 29

    D. J. Tyrrell, A. P. Horne, K. R. Holme, J. M. H. Preuss, C. P. Page, M. W. A. F. M. J. Thomas August, and T. C. Joseph, “Heparin in Inflammation: Potential Therapeutic Applications beyond Anticoagulation,” in Advances in Pharmacology (Academic, New York, 1999), p. 151.

  28. 30

    J. Fu, J. Ji, W. Yuan, and J. Shen, Biomaterials 26, 6684 (2005).

  29. 31

    L. D. Thompson, M. W. Pantoliano, and B. A. Springer, Biochemistry 33, 3831 (1994).

  30. 32

    J. J. Yoon, H. J. Chung, H. J. Lee, and T. G. Park, J. Biomed. Mater. Res. Part A (2006).

  31. 33

    M. Philippe, M. M. Claudia, R. W. Scott, P. B. Richard, and B. M. Bartlett, Eur. J. Neurosci. 10, 607 (1998).

  32. 34

    A. G. Rabchevsky, I. Fugaccia, A. F. Turner, D. A. Blades, M. P. Mattson, and S. W. Scheff, Exp. Neurol. 164, 280 (2000).

  33. 35

    X.-Y. Song, F. Li, F.-H. Zhang, J.-H. Zhong, and X.-F. Zhou, PLoS One 3, e1707 (2008).

  34. 36

    J. F. Poduslo and G. L. Curran, Brain Res. Mol. Brain Res. 36, 280 (1996).

  35. 37

    N. R. Kobayashi, D.-P. Fan, K. M. Giehl, A. M. Bedard, S. J. Wiegand, and W. Tetzlaff, J. Neurosci. 17, 9583 (1997).

  36. 38

    M. Stroh, W. R. Zipfel, R. M. Williams, S. C. Ma, W. W. Webb, and W. M. Saltzman, Nature Mater. 3, 489 (2004).

  37. 39

    S. Biffo, N. Offenhauser, B. D. Carter, and Y. A. Barde, Development 121, 2461 (1995).

  38. 40

    L. Richert, P. Lavalle, D. Vautier, B. Senger, J. F. Stoltz, P. Schaaf, J. C. Voegel, and C. Picart, Biomacromolecules 3, 1170 (2002).

  39. 41

    D. R. Nisbet, A. E. Rodda, M. K. Horne, J. S. Forsythe, and D. I. Finkelstein, Biomaterials 30, 4573 (2009).

  40. 42

    M. V. Voinova, M. Jonson, and B. Kasemo, Biosens. Bioelectron. 17, 835 (2002).

  41. 43

    D. Yoo, S. S. Shiratori, and M. F. Rubner, Macromolecules 31, 4309 (1998).

  42. 44

    I. Husson, C.-M. Rangon, V. Lelievre, A.-P. Bemelmans, P. Sachs, J. Mallet, B. E. Kosofsky, and P. Gressens, Cereb. Cortex 15, 250 (2005).

  43. 45

    J. Bilsland, M. Rigby, L. Young, and S. Harper, J. Neurosci. Methods 92, 75 (1999).

  44. 46

    E. Meijering, M. Jacob, J. C. F. Sarria, P. Steiner, H. Hirling, and M. Unser, Cytometry, Part A 58A, 167 (2004).

  45. 49

    M. Bibel, J. Richter, E. Lacroix, and Y.-A. Barde, Nat. Protoc. 2, 1034 (2007).

  46. 50

    L. Frank, R. Ventimiglia, K. Anderson, R. M. Lindsay, and J. S. Rudge, Eur. J. Neurosci. 8, 1220 (1996).

  47. 51

    C. Picart, J. Mutterer, L. Richert, Y. Luo, G. D. Prestwich, P. Schaaf, J. C. Voegel, and P. Lavalle, Proc. Natl. Acad. Sci. U.S.A. 99, 12531 (2002).

  48. 52

    Y. Zhu, C. Gao, X. Liu, and J. Shen, Biomacromolecules 3, 1312 (2002).

  49. 53

    M. Bellion, L. Santen, H. Mantz, H. Hahl, A. Quinn, A. Nagel, C. Gilow, C. Weitenberg, Y. Schmitt, and K. Jacobs, J. Phys.: Condens. Matter 20, 404226 (2008).

  50. 54

    I. C. Maier and M. E. Schwab, Philos. Trans. R. Soc. London, Ser. B 361, 1611 (2006).

  51. 56

    R. J. Tolwani, P. S. Buckmaster, S. Varma, J. M. Cosgaya, Y. Wu, C. Suri, and E. M. Shooter, Neuroscience 114, 795 (2002).

  52. 57

    B. D. Carter, U. Zirrgiebel, and Y.-A. Barde, J. Biol. Chem. 270, 21751 (1995).

  53. 58

    R. Deogracias, G. Espliguero, T. Iglesias, and A. Rodriguez-Pena, Mol. Cell. Neurosci. 26, 470 (2004).

  54. 59

    D. Cai, Y. Shen, M. De Bellard, S. Tang, and M. T. Filbin, Neuron 22, 89 (1999).

  55. 60

    A. Meyer-Franke, G. A. Wilkinson, A. Kruttgen, M. Hu, E. Munro, M. G. Hanson, L. F. Reichardt, and B. A. Barres, Neuron 21, 681 (1998).

  56. 61

    J. K. Atwal, B. Massie, F. D. Miller, and D. R. Kaplan, Neuron 27, 265 (2000).

  57. 62

    J. C. Perron and J. L. Bixby, Mol. Cell. Neurosci. 13, 362 (1999).

  58. 63

    Y. Ito, G. Chen, Y. Imanishi, T. Morooka, E. Nishida, Y. Okabayashi, and M. Kasuga, J. Biochem. (Tokyo) 129, 733 (2001).

  59. 64

    Q. Li and Y. Chau, J. Biomed. Mater. Res. Part A 94A, 688 (2010).

  60. 65

    Y.-Z. Zhang, D. B. Moheban, B. R. Conway, A. Bhattacharyya, and R. A. Segal, J. Neurosci. 20, 5671 (2000).

  61. 66

    Y. Gao, E. Nikulina, W. Mellado, and M. T. Filbin, J. Neurosci. 23, 11770 (2003).

  62. 67

    L. Aigner, S. Arber, J. P. Kapfhammer, T. Laux, C. Schneider, F. Botteri, H.-R. Brenner, and P. Caroni, Cell 83, 269 (1995).

  63. 68

    K. F. Meiri, J. L. Saffell, F. S. Walsh, and P. Doherty, J. Neurosci. 18, 10429 (1998).

  64. 69

    R. D. Jacobson, I. Virag, and J. H. Skene, J. Neurosci. 6, 1843 (1986).

  65. 70

    A. E. Fournier, J. Beer, C. O. Arregui, C. Essagian, A. J. Aguayo, and L. McKerracher, J. Neurosci. Res. 47, 561 (1997).

  66. 71

    A. Buffo, A. J. D. G. Holtmaat, T. Savio, J. S. Verbeek, J. Oberdick, A. B. Oestreicher, W. H. Gispen, J. Verhaagen, F. Rossi, and P. Strata, J. Neurosci. 17, 8778 (1997).

  67. 72

    P. Caroni, L. Aigner, and C. Schneider, J. Cell Biol. 136, 679 (1997).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, K., Sun, G.Z., Bernard, C.C. et al. Optimizing interfacial features to regulate neural progenitor cells using polyelectrolyte multilayers and brain derived neurotrophic factor. Biointerphases 6, 189–199 (2011). https://doi.org/10.1116/1.3656249

Download citation