Journal for Biophysical Chemistry

Biointerphases Cover Image
Open Access

Co-culture of osteocytes and neurons on a unique patterned surface

  • Mary E. Boggs1, 2,
  • William R. Thompson3, 4,
  • Mary C. Farach-Carson5,
  • Randall L. Duncan1 and
  • Thomas P. BeebeJr.6Email author

Received: 25 August 2011

Accepted: 31 October 2011

Published: 22 December 2011


Neural and skeletal communication is essential for the maintenance of bone mass and transmission of pain, yet the mechanism(s) of signal transduction between these tissues is unknown. The authors established a novel system to co-culture murine long bone osteocyte-like cells (MLO-Y4) and primary murine dorsal root ganglia (DRG) neurons. Assessment of morphology and maturation marker expression on perlecan domain IV peptide (PlnDIV) and collagen type-1 (Col1) demonstrated that PlnDIV was an optimal matrix for MLO-Y4 culture. A novel matrix-specificity competition assay was developed to expose these cells to several extracellular matrix proteins such as PlnDIV, Col1, and laminin (Ln). The competition assay showed that approximately 70% of MLOY4 cells preferred either PlnDIV or Col1 to Ln. To co-culture MLO-Y4 and DRG, we developed patterned surfaces using micro-contact printing to create 40 μm × 1 cm alternating stripes of PlnDIV and Ln or PlnDIV and Col1. Co-culture on PlnDIV/Ln surfaces demonstrated that these matrix molecules provided unique cues for each cell type, with MLO-Y4 preferentially attaching to the PlnDIV lanes and DRG neurons to the Ln lanes. Approximately 80% of DRG were localized to Ln. Cellular processes from MLO-Y4 were closely associated with axonal extensions of DRG neurons. Approximately 57% of neuronal processes were in close proximity to nearby MLO-Y4 cells at the PlnDIV-Ln interface. The surfaces in this new assay provided a unique model system with which to study the communication between osteocyte-like cells and neurons in an in vitro environment.

Authors’ Affiliations

Department of Biological Science, University of Delaware, Newark, USA
Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
Department of Physical Therapy, University of Delaware, Newark, USA
Program in Biomechanics and Movement Science, University of Delaware, Newark, USA
Department of Biochemistry and Cell Biology, Rice University, Houston, USA
Department of Chemistry and Biochemistry, University of Delaware, Newark, USA


  1. C. Adam, A. Llorens, B. Baroukh, M. Cherruau, and J. L. Saffar, Exp. Physiol. 85, 61 (2000).View ArticleGoogle Scholar
  2. H. M. Blau and D. Baltimore, J. Cell Biol. 112, 781 (1991).View ArticleGoogle Scholar
  3. D. E. Ingber, J. Cell Sci. 104, 613 (1993).Google Scholar
  4. S. M. Frisch and H. Francis, J. Cell Biol. 124, 619 (1994).View ArticleGoogle Scholar
  5. E. H. Sage, J. Clin. Invest. 107, 781 (2001).View ArticleGoogle Scholar
  6. W. R. Thompson, S. Modla, B. J. Grindel, K. J. Czymmek, C. B. Kirn-Safran, L. Wang, R. L. Duncan, and M. C. Farach-Carson, J. Bone Miner. Res. 26, 618 (2011).View ArticleGoogle Scholar
  7. E. Arikava-Hirasawa, H. Watanabe, H. Takami, J. R. Hassell, and Y. Yamada, Nat. Genet. 23, 354 (1999).View ArticleGoogle Scholar
  8. H. Y. Zhou, Ann. N.Y. Acad. Sci. 1116, 323 (2007).View ArticleGoogle Scholar
  9. K. Q. Zhang, C. Barragan-Adjemian, L. Ye, S. Kotha, M. Dallas, Y. B. Lu, S. J. Zhao, M. Harris, S. E. Harris, J. Q. Feng, and L. F. Bonewald, Mol. Cell. Biol. 26, 4539 (2006).View ArticleGoogle Scholar
  10. T. A. Franz-Odendaal, B. K. Hall, and P. E. Witten, Dev. Dyn. 235, 176 (2006).View ArticleGoogle Scholar
  11. A. Martin, V. David, J. S. Laurence, P. M. Schwarz, E. M. Lafer, A. M. Hedge, and P. S. N. Rowe, Endocrinology 149, 1757 (2008).View ArticleGoogle Scholar
  12. H. F. Rios, L. Ye, V. Dusevich, D. Eick, L. F. Bonewald, and J. Q. Feng, J. Musculoskeletal and Neuronal Interact. 5, 325 (2005).Google Scholar
  13. J. Q. Feng, R. D'Souza, and C. Qin, J. Dent. Res. 86, 1134 (2007).View ArticleGoogle Scholar
  14. C. Y. Lu, S. Huang, T. Miclau, J. A. Helms, and C. Colnot, Histochem. Cell Biol. 121, 493 (2004).View ArticleGoogle Scholar
  15. A. Nampei, J. Hashimoto, K. Hayashida, H. Tsuboi, K. Shi, H. Miyashita, T. Yamada, S. Morimoto, T. Ochi, and H. Yoshikawa, Bone 32, S136 (2003).View ArticleGoogle Scholar
  16. S. Y. Fu and T. Gordon, Mol. Neurobiol. 14, 67 (1997).View ArticleGoogle Scholar
  17. P. C. Letourneau, M. L. Condic, and D. M. Snow, Curr. Opin. Genet. Dev. 2, 625 (1992).View ArticleGoogle Scholar
  18. P. Kannus, L. Jozsa, T. A. H. Jarvinen, T. L. N. Jarvinen, M. Kvist, A. Natri, and M. Jarvinen, Histochem. J. 30, 799 (1998).View ArticleGoogle Scholar
  19. D. Mach, S. Rogers, M. Sabino, N. Luger, M. Schwel, J. Pomonis, C. Keyser, D. Clohisy, D. Adams, P. O'Leary, and P. Manyth, Neuroscience 113, 155 (2002).View ArticleGoogle Scholar
  20. S. Vukicevic, F. P. Luyten, H. K. Kleinman, and A. H. Reddi, Cell 63, 437 (1990).View ArticleGoogle Scholar
  21. C. M. Serre, D. Farlay, P. D. Delmas, and C. Chenu, Bone 25, 623 (1999).View ArticleGoogle Scholar
  22. C. A. Goubko and X. D. Cao, Mater. Sci. Eng., C 29, 1855 (2009).View ArticleGoogle Scholar
  23. M. Yamato, O. H. Kwon, M. Hirose, A. Kikuchi, and T. Okano, J. Biomed. Mater. Res. 55, 137 (2001).View ArticleGoogle Scholar
  24. J. Y. Lee, S. S. Shah, J. Yan, M. C. Howland, A. N. Parikh, T. R. Pan, and A. Revzin, Langmuir 25, 3880 (2009).View ArticleGoogle Scholar
  25. Z. P. Zhang, R. Yoo, M. Wells, T. P. Beebe, R. Biran, and P. Tresco, Biomaterials 26, 47 (2005).View ArticleGoogle Scholar
  26. M. C. Farach-Carson, A. J. Brown, M. Lynam, J. B. Safran, and D. D. Carson, Matrix Biol. 27, 150 (2008).View ArticleGoogle Scholar
  27. C. H. Turner, A. G. Robling, R. L. Duncan, and D. B. Burr, Calcif. Tissue Int. 70, 435 (2002).View ArticleGoogle Scholar
  28. M. S. Patel and F. Elefteriou, Calcif. Tissue Int. 81, 247 (2007).View ArticleGoogle Scholar
  29. W. M. Theilacker, H. Bui, and T. P. Beebe, BioInterphases 6, 105 (2011).View ArticleGoogle Scholar


© American Vacuum Society 2011