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Abstract The use of multivariate analysis (MVA)

methods in the processing of time-of-flight secondary ion

mass spectrometry (ToF-SIMS) data has become increas-

ingly more common. MVA presents a powerful set of tools

to aid the user in processing data from complex, multi-

component surfaces such as biological materials and bio-

sensors. When properly used, MVA can help the user

identify the major sources of differences within a sample or

between samples, determine where certain compounds

exist on a sample, or verify the presence of compounds that

have been engineered into the surface. Of all the MVA

methods, principal component analysis (PCA) is the most

commonly used and forms an excellent starting point for

the application of many of the other methods employed to

process ToF-SIMS data. Herein we discuss the application

of PCA and other MVA methods to multicomponent ToF-

SIMS data and provide guidelines on their application and

use.

1 Introduction

The emerging technologies for creating complex and spe-

cific engineered surface chemistry has increased the need

for surface analysis methods that can accurately charac-

terize and verify the actual surface chemistry [1]. This is

particularly challenging when one considers the complex-

ity of even simple surface modifications, and the trend

towards using multicomponent, patterned surface chemis-

try in a wide range of biomedical applications, including

biosensing. For example, an engineered surface may have a

linker molecule to tether a coating to the substrate, mole-

cules with binding groups for a specific analyte, and other

molecules to provide a non-fouling background to avoid

non-specific adsorption [2]. Each of these surface compo-

nents could have a similar chemical composition with

differences only in the structure or arrangement of the

chemical groups. To optimize the performance of biosen-

sors it is essential to minimize non-specific interactions via

a non-fouling background and to maximize the biological

activity of surface tethered probe molecule via control of

orientation, conformation, and density [3]. Though no one

technique can provide a complete characterization of such

a surface, time-of-flight secondary ion mass spectrometry

(ToF-SIMS) is one method that shows great promise due to

its molecular specificity, relatively high mass resolution,

and high sensitivity [4]. However, ToF-SIMS data from

even a set of simple homogenous surfaces can be very

complex.

Good introductions to ToF-SIMS can be found in the

literature [4–7]. ToF-SIMS is a mass spectrometry tech-

nique that probes the chemistry and structure of the outer

surface by impacting energetic primary ions onto a sample

and analyzing the secondary ions emitted from the surface.

There are a wide variety of primary ions used in ToF-SIMS

ranging from mono-atomic ions such as Ar?, Ga?, Cs?,

Au?, Bi?, to cluster ions such as Aun
? (n = 1-3), Bin

?

(n = 1–5), SF5
?, Arn

? (n * 500–10,000) and C60
?. These

ions impact the surface with energies typically in the range
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of 1–25 keV causing a collision cascade that results in the

emission of ions, neutrals and radicals. Only a small frac-

tion (typically 1 % or less) of the emitted material is ion-

ized. These ionized atoms, molecules, and molecular

fragments are extracted into a time-of-flight mass analyzer

where they are separated by mass and recorded in a mass

spectrum. ToF-SIMS is an ultra high vacuum technique

that requires the samples be analyzed in a dehydrated state,

but hydrated conditions can be simulated by placing sam-

ples in a frozen hydrated state. In spite of this limitation,

ToF-SIMS has been used successfully to analyze a wide

range of organic and biological samples including proteins

[8–15], lipids [16–19], cells [20–25], and tissues [26–30].

A typical ToF-SIMS spectrum can contain hundreds of

peaks, the intensity of which can vary due to the com-

position, structure, order, and orientation of the surface

species [31]. ToF-SIMS data are inherently multivariate

since the relative intensities of many of the peaks within a

given spectrum are related, due to the fact that they often

originate from the same surface species [32, 33]. The

challenge is to determine which peaks are related to each

other, and how they relate to the chemical differences

present on the surface. This problem is then exacerbated

by the fact that a given data set typically contains mul-

tiple spectra from multiple samples, which can result in a

large data matrix to be analyzed. This data overload is

even more prominent in ToF-SIMS imaging where a

single 256 9 256 pixel image contains 65536 spectra.

This complexity, combined with the enormous amount of

data produced in a ToF-SIMS experiment, has led to a

marked increase in the use of multivariate analysis

(MVA) methods in the processing of ToF-SIMS images

and spectra [33].

Table 1 presents a summary of ToF-SIMS studies that

have been carried out using at least one MVA method.

As seen in the table, MVA includes an alphabet soup of

methods that are designed to aid a researcher in reducing

large data sets to a manageable number of variables with

the aim of helping them understand and interpret the

data. These methods include, but are not limited to

principal components analysis (PCA), discriminant anal-

ysis (DA), partial least squares (PLS), multivariate curve

resolution (MCR), and maximum autocorrelation factors

(MAF).

These MVA methods are one of many tools available

that can aid in the interpretation of ToF-SIMS images and

spectra. These methods are statistically based, and to be

used properly require good experimental plans and con-

trols. MVA methods should not be treated as a black box.

These methods are a way for the analyst to summarize and

understand the large data sets generated by ToF-SIMS. The

use of MVA does not preclude the need for a sound

understanding of ToF-SIMS, or for using complementary

surface analysis methods in order to interpret the data and

understand the surfaces being analyzed.

In this short review we will propose guidelines for the

successful application of MVA to ToF-SIMS data, and

provide examples from the literature and our group on how

these methods have been successfully applied. Since it is

beyond the scope of this paper to discuss all MVA methods

we will mainly focus on PCA and its application to ToF-

SIMS data, though other methods will also be highlighted.

PCA forms the basis of many of the other MVA methods

and therefore provides a good entry point into the use of

MVA with ToF-SIMS data.

2 PCA

2.1 Overview

A brief summary of PCA will be provided below. Jackson

and Wold [34–36] have provided an excellent general

introduction to PCA, and other overviews of using MVA

with ToF-SIMS data can be found in the literature [32, 37–

39, 41].

Principal component analysis is a MVA method that

looks at the overall variance within a data set. Herein a data

set is defined as a matrix where the rows contain samples

and the columns contain variables. For ToF-SIMS data the

samples are spectra and the variables are measured inten-

sities of individual mass channels or integrated peak areas

from selected or binned regions. PCA is calculated from

the covariance matrix of this original data set [42, 43].

Geometrically, PCA is an axis rotation that aligns a new set

of axes, called principal components (PC), with the maxi-

mal directions of variance within a data set [35]. PCA

generates three new matrices containing the scores, the

loadings, and the residuals. The scores show the relation-

ship between the samples (spectra) and are a projection of

the original data points onto a given PC axis. The loadings

show which variables (peaks) are responsible for the sep-

aration seen in the scores plot. The loadings are the

direction cosines between the original axes and the new PC

axes. The residuals represent random noise that is pre-

sumed to not contain any useful information about the

samples [34].

Together the scores and loadings represent a concise

summary of the original data that in most cases can aid in

interpreting the data being analyzed. The scores and

loadings must be interpreted together and have little

meaning alone. Figure 1 shows the scores and loadings

plots from two brands of 70 % dark chocolate analyzed by

ToF-SIMS and PCA. The data was normalized to the total

intensity of each respective spectrum, square root trans-

formed and mean centered prior to PCA. As seen in Fig. 1a
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Table 1 Summary table of selected studies using mva for processing of ToF-SIMS data

Samples/system MVA technique References

Multilayer surface grafting of furanones PCA [74]

Tissue analysis PCA [27, 28, 43]

Characterization of adsorbed proteins PCA [8, 9, 57–64, 75–77]

Analysis of SAMs on gold PCA [78–81]

Analysis of hydrogen and methane plasma modified graphite PCA [82]

Surface chemistry in mineral flotation separation PCA [83]

Analysis of lipids PCA [16–19]

Analysis of polymers PCA [84–91]

Quantification with polymers PCA [92–97]

Analysis of atmospheric aerosol particles PCA [98, 99]

PCA—data pretreatment, methodology PCA [32, 44, 45, 100]

Depth profiling PCA [101, 102]

Analysis of ball point pen ink PCA [103]

Analysis of sugars PCA [50, 104]

Image analysis of patterned surfaces PCA [67]

Discrimination between different calcium phosphate phases PCA [105]

Analysis of decellularized extra cellular matrix PCA [47, 48]

Analysis of the affects of storage on a new tooth cement PCA [106]

Determining the optimal plasma polymerization conditions for maleic anhydride PCA [107]

Discrimination between bacterial samples PCA [25]

Transfer of organics onto glass PCA [108]

Characterization of extracellular matrix secreted from cells PCA [13–15, 109]

Analysis of non-mass selected ToF-SIMS data MCR [110]

Forensic analysis of bioagents MCR [111]

MCR for image analysis MCR [112]

Depth profile analysis MCR [113]

Analysis of white radish sprouts MCR [114]

3D image analysis MCR [115]

Study of the mechanism of n-pentanol polymerization on SiO2 during rubbing MCR [116]

Analysis of mixed composition surfaces MCR [117]

Predicting wettability on patterned ITO surfaces PLS [118]

Predicting the surface composition of oxygen containing plasma polymers PLS [119]

Correlation of polymer surface chemistry with protein adsorption and/or cell growth PLS [44, 52, 120, 121]

Quantification of the composition of plasma polymerized thin films PLS [122]

Quantification of cross-linker density in polymer films PLS [123]

Quantification of protein adsorption on polymer surface PLS [56]

Identification and imaging of 15 N labeled cells MAF [124]

Analysis of proteins on samples with topography MAF [125]

Protein adsorption on dental materials DPCA [126]

Interpretation of SIMS depth profiles FA [127]

Imaging proteins on dialysis membranes Information theory [128]

Analysis of cells K-means [129]

Classification of adsorbed proteins NN [53]

Using mixture models for image analysis Mixture models [130]

Quantification of polymer blend composition PCA, PLS [131]

Analysis of monolayers on scribed silicon PCA, PLS [132]

Analysis of polymer microarrays PCA, PLS [49]

Characterization of PLL–PEG monolayers PCA, PLS [133]
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the two samples are separated on the PC1 axis. The PC1

loadings in Fig. 1b show which peaks are responsible for

the differences seen between the two samples. In general

peaks with high loadings on one side of a given PC axis

will show a higher relative intensity for samples with high

scores on the same side of the given PC axis. In the case of

these two chocolates, Sample 2 (negative PC1 scores)

corresponds with a series of hydrocarbons and peaks such

as Al, Na, Ca (negative PC1 loadings). Sample 1 (positive

PC1 scores) corresponds with K and a series of higher mass

peaks from lipids and diacylglycerols (positive PC1 load-

ings). It should be noted that this does not necessarily mean

that the high mass lipid peaks do not show up in the spectra

from Sample 2, only that the relative intensities of these

peaks were lower in Sample 2. This can be seen in Fig. 2

which shows the relative intensity of Na and a peak from a

diacylglycerol of stearic and oleic acid. As expected, the

relative intensity of the Na peak is higher for Sample 1, and

the relative intensity of the diacylglycerol peak is higher

for Sample 2.

2.2 Data Collection

Since all MVA methods are statistically based, it is

important to make sure that one collects sufficient data to

have statistically relevant results. The exact number of

replicates required will depend on the system being ana-

lyzed. However, doing MVA processing on data from only

1 or 2 spots per sample will most likely produce mean-

ingless, unreproducible results unless the surfaces being

analyzed are extremely homogeneous. For ToF-SIMS

spectra we suggest collecting data from at least 3–5 spots

Table 1 continued

Samples/system MVA technique References

Discrimination between different paint surfaces PCA, PLS [134]

Determining distribution of polymers in blended polymer film PCA, MCR [135]

Analysis strategies for ToF-SIMS images with topography PCA, MCR [38]

Analysis strategies for mixed organic surfaces PCA, MCR [39]

Classification of bacterial strains PC-DFA [73, 136]

Classification of cells PC-DFA [20]

Identification of adsorbed proteins PCA, LDA [54, 55, 137, 138]

Correlation of images from different techniques using MVA PCA, CCA [139]

Impact of surface chemistry on chalcopyrite floatation PCA, DA [140]

Identification of cells in co-cultures PCA, PLS-DA [21]

Mapping lipids in mice PCA, HC [26]

Discrimination between different polymers PCA, NN [141]

Image denoising, segmentation and compound identification PCA, Latent profile Analysis [142]

Analysis strategies for ToF-SIMS images PCA, MAF [37, 143]

Analysis of ToF-SIMS images with topography PCA, Mixture model [144]

Comparing MAF with standard statistical tools for image analysis MAF, Statistics [145]

Analysis of bacterial isolates PC-CVA, GA-CVA [23]

Analysis of exhaled particles PCA, OPLS-DA [146]

ToF-SIMS image analysis strategies, Data Storage PCA, PARAFAC [147]

Exploratory analysis of biological surfaces PCA, PC-DFA, MAF [24]

Identification of adsorbed proteins PCA, LDA, DPCA [148]

Imaging of organic and biological systems PCA, MAF, MCR [149]

Characterization of carbohydrate microarrays PCA, MCR, PLS [51]

Strategies for analysis of biomolecules PCA, PCR, MAF [150]

Discrimination between bacterial samples PCA, PLS, LDA [151]

Discrimination between solid-phase extraction stationary phases PCA, PLS, NN [152, 153]

Analysis of Cu–Fe Sulfides PCA, SIMCA, K-NN [154]

Quantification of multicomponent protein mixtures PLS, SIMCA [10–12, 155]

Correlation of images from different techniques using MVA PLS, MAF [156]

Characterization of polymer blend PCA, MAF, MCR, PLS, PCR [157]

Classification of biological samples PCA, LDA, PLSDA, SIMCA [158]
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per sample across at least 2 samples for homogenous sur-

faces, and 5–7 spots per sample across at least 3 samples

for non-homogenous samples. It is also best to collect data

from samples created on separate days to get a true mea-

sure of the sample-to-sample variability. Care should also

be taken to minimize, and ideally avoid, detector saturation

during data collection. Saturated peaks can result in the

production of extra factors that describe the non-linear

intensity variations of saturated peaks. For example, Lee

and Gilmore [40] showed an imaging PCA example of an

immiscible blend of PC/PVC where the first PC captured

the difference between the two polymers, and the second

PC captured differences between the 35Cl- peak due to

detector saturation. We have also observed isotopes load-

ing in opposite directions when one of the isotopic peaks is

saturated.

2.3 Data Preprocessing

2.3.1 Peak Selection

Though it is possible to run MVA on every mass channel of

a ToF-SIMS spectrum, it is more common for users to

export a set of selected peak areas from the spectrum. This

is a logical choice since ToF-SIMS spectra contain many

mass channels that contain only noise, or no counts, due to

the low background between peaks. Since the set of peaks

used in MVA can affect the results, peak selection becomes

the first data preprocessing step before one can run MVA.

Peak selection can be done by binning the data into chosen

Fig. 1 PCA scores and loadings from a set of dark chocolate

samples. a PCA PC1 scores. The black squares represent the 95 %

confidence limits for each sample. Samples are separated from each

other on the PC1 axis. b PCA PC1 loadings plot. Peaks with positive

loadings correspond with samples with positive scores. Peaks with

negative loadings correspond with samples with negative scores

Fig. 2 Peak area plots from the chocolate data. a m/z = 23 (Na), a

negative loading peak. b m/z = 605 (diacylglyerol peak), a positive

loading peak. As expected from the PCA results, the relative intensity

of Na is higher on sample 1 and the relative intensity of the

diacylglycerol peak is higher on sample 2
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interval sizes, using automated peak detection routines, or

by manually choosing and measuring peak areas. Due to

the large number of peaks typically seen at each nominal

mass in ToF-SIMS spectra from organic and biological

surfaces, manual peak selection is recommended. Data

binning is quick, but it loses the high mass resolution

information present in the original spectra. If data binning

is used, one must go back to the original data to determine

which peaks are changing at a given mass to properly

interpret the MVA results. Automated peak selection rou-

tines are getting better, but they often misplace peak inte-

gration limits, which can be problematic when working

with spectra with overlapping peaks. Manual peak selec-

tion is time consuming, but allows the user to utilize all of

the spectral peaks and to check the peak integration limits

to assure they are placed properly across all samples. The

assumptions made when selecting peaks for ToF-SIMS

MVA have been reviewed previously [33].

Before selecting peaks it is important to make sure that

all of the spectra are properly mass calibrated, and that the

same calibration set is used for all spectra within a given

sample set. When selecting peaks it is recommended that

one overlaps representative spectra from each sample type

in a given set to be sure all peaks across all spectra are

selected. The same peak list must be used for all samples

within a given set.

2.3.2 Data Scaling

The results produced by many MVA methods depend

strongly on the data matrix preprocessing. Data prepro-

cessing includes normalization, mean centering, scaling

and transformation. The goal of data preprocessing is to

remove variance from the matrix that is not due to chem-

ical differences between the samples. This could include

variation due to the instrumentation, differences in the

absolute intensity of peaks within a spectrum, differences

due to topography or other factors. The assumptions made

when preprocessing a data matrix have been addressed

[33]. Normalization is done by dividing each variable

(peak) in the matrix by a scalar value. Normalization is

done to remove variance in the data that is due to differ-

ences such as sample charging, instrumental conditions or

topography. It should be noted however that normalization

can accentuate noise in ToF-SIMS images due to the low

count rates often found within the data. Therefore, care

should be taken when using normalization of ToF-SIMS

images. Mean centering subtracts the mean of each vari-

able (peak) from the data set. This allows the data to be

compared across a common mean of zero. Scaling refers to

dividing each variable by a constant, and transformation

refers to transforming the data with a function such as the

logarithm or square root. There are many different ways to

scale and transform a data set. It is recommended that one

selects a scaling and transformation method based on the

experimental uncertainty of each peak. ToF-SIMS data

often follows a Poisson distribution. Keenan and Kotula

[39, 44, 45] proposed a scaling method that accounts for

Poisson noise which has been found to work well for ToF-

SIMS data. If Poisson scaling is not available in the soft-

ware package being used, other good alternatives include

using a square root transform of the data or scaling by the

square root of the mean of the data. Regardless of the

preprocessing methods used, one should understand the

assumptions made [33] when applying a given method and

choose a method based on what they are trying to learn

from the data and not what gives the best looking results.

2.4 Interpreting Results

Once the data set has been processed using MVA the user

must interpret what, if anything, the results mean. This is

particularly important when using scale dependent methods

such as PCA or MCR since the results obtained will be

affected by the assumptions made when preprocessing the

data. Though there are no quantitative measures of the

validity for a given result, we suggest using the following

guidelines when examining the results from MVA pro-

cessed ToF-SIMS data: (1) Are the results logical? (2) Do

the results agree with the other data collected on the

samples? (3) Are the results reflected in the original data?

Multivariate analysis is simply a tool available to help

understand large data sets. As with any results, one should

always ask if the results obtained make sense. When using

MVA one should also ask if the assumptions made during

data pre-processing make sense, and are based off of valid

assumptions about the data. Also, since no one surface

analytical method can provide all the information needed to

understand a surface, it is important to collect comple-

mentary data on the samples within a given set. The user

can then validate the ToF-SIMS data with respect to the

information obtained from the other methods. Another

important aspect of interpreting results from MVA is to

validate the results by looking at the original data. This

means going back to look at the relative intensity of the

peaks that are highlighted in the loadings plots to verify

that they follow the trends shown in the scores plots (for

example, see Ref. [46]). This is particularly important

when using PCA since some PCs can capture multiple

trends across the samples. When this happens, one will find

that some peaks with high loadings can reflect changes in

only a subset of the samples seen in the scores plot. Once

caveat that should be noted when validating results with the

original data is that methods such as PCA are calculated

from the scaled covariance matrix, and that each sub-

sequent PC is calculated from the matrix after the previous
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PCs have been subtracted from the data set. Therefore, the

original data is only truly reflective of the first PC.

Another important aspect to keep in mind is that unsu-

pervised MVA methods such as PCA are designed to find

the greatest directions of variance within a data set

regardless of their source. That means that if one sample

within a data set is contaminated, the first few PCs will

most likely separate out the contaminated sample from the

other samples. Thus, any variance that is due to the

designed surface chemistry may be suppressed by the large

variance due to the contamination. However, it is important

to note that being able to discover contamination within a

sample set can be a valuable piece of information that can

help troubleshoot sample preparation and handling proto-

cols. This information can then be fed back into the sample

procedures and experimental design so differences in the

surface chemistry of interest can be studied.

3 MVA of Complex Surfaces

Most biological materials are multicomponent whether

they involve a mixture of proteins, a combination of cells

and extracellular matrix, or a mixed polymer system used

as a scaffold for tissue engineering. Being able to accu-

rately characterize these samples can be challenging and

can push the limits of any analytical technique. ToF-SIMS

and MVA have been used to analyze a range of different

multicomponent systems including binary [8–11], ternary

[10] and multicomponent protein layers [12–15], lipids

[16–19], mammalian cells [20–22], microbial cells [23–

25], decellularized extracellular matrix [47, 48], tissues

[26–30] and polymer microarrays [49–52].

Many multicomponent systems are challenging to ana-

lyze because the components within the systems generate

the same peaks. For example, when analyzing immobilized

proteins with ToF-SIMS the spectra are dominated by

amino acid fragments, not small or large peptides. This

means that for any given protein, the ‘‘characteristic’’ peaks

will all be the same, and it is the relative intensities of these

peaks that encodes information about the proteins identity

[53–55], concentration [10–12, 56, 57], conformation [58–

62] orientation [63–66], or spatial distribution [66–69].

Therefore, these types of problems are truly multivariate in

nature. As a result of this interrelated spectral complexity,

one will need proper controls to be able to define the best

system to characterize a given sample set. Furthermore,

one will need to choose the appropriate MV method to

provide the information sought in the experiments. For

example PCA, MCR or MAF would be logical choices for

general data exploration or sample identification, whereas

PCR or PLS would be better for quantification or modeling,

and DFA, HCA or PLS-DA would be better for

classification. The remainder of this section provides a brief

discussion for applying MVA to multicomponent systems.

3.1 Analysis of Polymer Microarrays

Publications from Alexander et al. [49, 51, 52, 70, 71]

show how to combine combinatorial chemistry, ToF-SIMS

and MVA. They use a microarray printer to prepare

microarrays of a library of polymeric materials for high

throughput assays, and relate polymer functionality to

surface properties [49] and cellular interactions [52]. They

have also studied carbohydrate microarrays [51] and

examined printing heterogeneities with different polymer

formulations [70].

In their study of the relationship of surface chemistry

with wettability, the authors used a combinatorial copoly-

mer array of 576 different polymers from 24 unique

monomers [49]. The polymers were made using a 70:30

mixture of 2 monomers. PCA scores of the mean centered

data showed that most of the polymers clustered together

based off the major component of the monomer mixture.

The loadings showed peak trends that corresponded with

the chemical differences between the types of monomers as

expected from their molecular structures. The authors then

created a PLS model correlating the ToF-SIMS data with

the water contact angle, and showed good correlation

between the predicted and measured water contact angle

(R2 = 0.94). This work is a good demonstration of how

using a systematically designed study combined with ToF-

SIMS and MVA can provide useful chemical information

from a complex data set.

3.2 Analysis of Patterned NHS on Polymer Substrates

We have used ToF-SIMS imaging and PCA to analyze

patterned polymers surfaces functionalized with N-

hydroxysuccinimide (NHS) [67, 68]. For this, commer-

cially available slides with a PEG based coating were

patterned using standard photolithography methods. The

surfaces were imaged using ToF-SIMS and the images

were analyzed using PCA of the normalized, mean cen-

tered data. PC1 was able to separate the NHS from the

methoxy regions with good fidelity matching the originally

designed pattern. The loadings separating the two regions

were seen to contain peaks characteristic of the two com-

pounds. Interestingly PC3 showed a dark outline around

the border between the two regions. From the PC3 loadings

it was determined that these dark regions corresponded

with the photoresist material used in the pattern creation.

The presence of residual photoresist had not been previ-

ously reported in other studies using a similar patterning

method. This study presents a good example of how the

combination of PCA with ToF-SIMS data can often pick
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up trends or identify components from complex data sets

that would otherwise be overlooked by the analyst. The

ability to identify the presence of submonolayer quantities

of unexpected organic contaminants on an organic surface

is particularly challenging, but as this study shows the

combination of ToF-SIMS and PCA is well suited for this

type of challenging analysis.

3.3 Analysis of DNA Microarray Spots

Our group has been working on a project analyzing spots

on DNA microarrays. In this project, DNA spots are

printed onto polymer-coated commercial microarray slides

(Slide H, amine-reactive polymer-coated slides, Schott

Nexterion, Louisville, USA). The exact chemistry of the

slides is proprietary, but it is known that the slides contain

NHS and a non-fouling background, most likely based on

polyethylene glycol (PEG). It is likely that the organic

coating is attached to the glass substrate via a silane linker.

The aim of this work is to investigate and understand the

surface chemistry of DNA microarrays with the goal of

improving their reproducibility and efficiency.

Figures 3 and 4 show the PCA scores and loadings plots

for the first 2 PCs from the negative ion data of a DNA spot

on the NHS coated slide. The data was Poisson scaled [45]

and then mean centered prior to PCA. As seen in Fig. 3a,

PC1 separates the DNA spot from the slide background.

The PC1 loadings seen in Fig. 3b show that the DNA spot

(darker area in PC1 scores plot, negative loadings) corre-

sponds with a series of nitrogen containing peaks, as well

as the PO2 and PO3 peaks from the DNA. The areas with

Fig. 3 PC1 scores and loadings from a DNA spot on an NHS

functionalized slide. a PC1 scores image. b PC1 loadings. The bright
areas correspond with peaks of the form CxHyOz. The dark regions
correspond with nitrogen containing peaks as well as PO2 and PO3

peaks from the DNA

Fig. 4 PC2 scores and loadings from a DNA spot on an NHS

functionalized slide. a PC2 scores image. b PC2 loadings. Bright
areas correspond with a series of silicon containing peaks, presum-

ably from the silane linker used to tether the NHS groups to the

surface and some other sulfur or phosphate containing peaks that

could be from the buffer solutions used to deposit the DNA. The dark
spots correspond with peaks of the form CxHyOz, which likely

originate from PEG
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positive scores on PC1 (bright area) correspond with a

series of peaks of the form CxHyOz, many of which are

characteristic of PEG. Examining the PC1 scores image

closely, it is apparent there are several bright spots scat-

tered around the surface. These spots are even more clearly

highlighted in the PC2 scores plot (see Fig. 4a). As seen in

the PC2 loadings plot these spots correspond with a set of

CxHyOz peaks (darker area in PC2 scores plot, negative

loadings), once again many of which are characteristic of

PEG. Looking at this data set as a whole, one can see that

DNA was spotted successfully onto the NHS coated slide,

however the DNA spot is not very uniform as noted by the

variation in intensity of the spot in the PC1 scores plot.

Overall, the background around the spot is fairly uniform,

but it appears there are spots that could be agglomerations

of PEG scattered across the surface (as seen by the bright

regions in the PC1 scores image and the dark regions in the

PC2 scores image). The non-uniform nature of PEG coat-

ings has been observed previously [72].

In this example, PCA was able to quickly summarize the

data from a sample with a complex and heterogeneous

surface chemistry, and highlight non-uniformities in the

DNA spots and in the background coating chemistry. This

type of information can then be fed back into the surface

engineering design to improve the sample preparation

methods to prepare more uniform DNA spots with

improved sensitivity and reproducibility.

3.4 Discriminating Cell and Tissue Types

Several groups have explored using MVA and ToF-SIMS

to distinguish cells [20–25, 73] and tissues [26–30]. Bio-

logical samples such as these represent some of the most

complex samples being explored by ToF-SIMS.

Fletcher et al. [73] used principal component discrimi-

nant function analysis (PC-DFA) to process the spectra of

nineteen bacterial strains of bacteria common to urinary

tract infections. PC-DFA applies discriminant function

analysis to the results from PCA and enables classification

of samples by maximizing the between group differences

while minimizing the within group differences. In their

study they showed that they could discriminate between 15

different strains with minimal overlap between sample

groups. They also showed using a sub group of the data that

they could build a PC-DFA model that could be used to

correctly classify spectra from various bacterial strains.

Wu et al. [27, 30] has explored the use of ToF-SIMS and

MVA for the analysis of tissues. In one example they used

PCA to analyze six different tissues from a mouse embryo

(brain, spinal cord, heart, liver, rib, skull) [30]. For this

analysis spectra were extracted from images taken from the

various tissues and processed with PCA. When using all

tissue types in the analysis they were able to show

separation between most groups, though they saw some

overlap between the brain and spinal cord, and the heart

and liver tissues. As could be expected, the brain and spinal

cord tissues clustered near each other, as these were similar

tissue types. The skull and rib tissues were also seen on the

same side of the PC axes as could be expected since they

are both bony tissues.

These brief examples show that MVA has proven suc-

cessful for distinguishing and classifying various cell and

tissue types, but the analysis is still limited by the lack of

identified peaks that appear within their spectra. It is also

noted that in most cases, the spectra from cells and tissues

are dominated by low mass fragments that can come from

multiple sources including proteins, lipids and other com-

pounds in the samples. This lack of higher mass molecular

information makes the use of MVA even more critical

since it can be used to distinguish trends in the fragmen-

tation pattern within a set of spectra that can be specific to

the type of sample [32, 55].

4 Outlook and Conclusions

As the use of MVA with ToF-SIMS data increases, it is

important that users understand the methods used and

assumptions made when processing their data. Proper

experimental design and sampling statistics are required to

ensure the results acquired are statistically significant. The

choice of MVA method should also be considered

according to the goals of the analysis and the results

obtained should be verified by going back to the raw data.

It should be remembered that MVA methods are simply

a set of tools that can be used by the analyst to better

understand their data. MVA does not replace the need to

understand the basic methodologies of analyzing ToF-

SIMS data, rather they provide a way to explore the data

more efficiently and make use of all of the information

within a given data set. MVA methods reduce large data

sets down to a more manageable set of variables that can

highlight trends in the data, build predictive models, and

find differences between samples. The continued devel-

opment and use of MVA methods for ToF-SIMS data

processing holds great promise for understanding complex

surface chemistry and dealing with the large data sets

generated from both simple and complex sample sets.

However, there is still a great need to expand the avail-

ability and depth of peak libraries for ToF-SIMS so one can

interpret the results gained through applying MVA. This is

particularly true for biological samples and other complex

surfaces such as biosensors.
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Laprévote O (2010) J Lipid Res 51(10):3034–3045

27. Wu L, Felton JS, Wu KJJ (2010) Method Mol Biol 656:267–281

28. Mains J, Wilson C, Urquhart A (2011) Eur J Pharm Biopharm

79(2):328–333

29. Amaya KR, Sweedler JV, Clayton DF (2011) J Neurochem

118(4):499–511

30. Wu L, Lu X, Kulp KS, Knize MG, Berman ESF, Nelson EJ,

Felton JS, Wu KJJ (2007) Int J Mass Spec 260:137–145

31. Michel R, Castner DG (2006) Surf Interface Anal

38(11):1386–1392. doi:10.1002/2382

32. Graham DJ, Wagner MS, Castner DG (2006) Appl Surf Sci

252(19):6860–6868

33. Wagner MS, Graham DJ, Ratner BD, Castner DG (2004) Surf

Sci 570(1–2):78–97

34. Wold S, Esbensen K, Geladi P (1987) Chemom Intell Lab Sys

2(1–3):37–52

35. Jackson JE (1980) J Qual Technol 12:201–213

36. Jackson JE (1991) A Users’s guide to principal components.

John Wiley & Sons, Inc., New York

37. Tyler BJ, Rayal G, Castner DG (2007) Biomaterials

28(15):2412–2423

38. Lee JLS, Gilmore IS, Fletcher IW, Seah MP (2009) Surf

Interface Anal 41(8):653–665

39. Lee JLS, Gilmore IS, Seah MP (2008) Surf Interface Anal

40(4):1–14

40. Lee JLS, Gilmore IS (2009) In: Vickerman JC, Gilmore IS (eds)

Surface analysis—the principal techniques, 2nd edn. John Wiley

& Sons, Chichester, pp 563–611

41. Jasieniak M, Graham DJ, Kingshott P, Gamble L, Griesser H

(2009) In: Rivière J, Myhra S (eds) Handbook of surface and

interface analysis. CRC Press, p. 529–564

42. Mellinger M (1987) Chemom Intell Lab Sys 2:29–36

43. Beebe KR, Kowalski BR (1987) Anal Chem 59(17):1007A–

1017A

44. Keenan MR, Smentkowski VS, Ohlhausen JA, Kotula PG

(2008) Surf Interface Anal 40(2):97–106

45. Keenan MR, Kotula PG (2004) Surf Interface Anal

36(3):203–212

46. Cheng F, Gamble LJ, Grainger DW, Castner DG (2007) Anal

Chem 79:8781–8788

47. Barnes CA, Brison J, Michel R, Brown BN, Castner DG, Bad-

ylak SF, Ratner BD (2011) Biomaterials 32(1):137–143

48. Brown BN, Barnes CA, Kasick RT, Michel R, Gilbert TW,

Beer-Stolz D, Castner DG, Ratner BD, Badylak SF (2010)

Biomaterials 31(3):428–437

49. Urquhart AJ, Taylor M, Anderson DG, Langer R, Davies MC,

Alexander MR (2008) Anal Chem 80(1):135–142

50. Bolles KM, Cheng F, Burk-Rafel J, Dubey M, Ratner DM

(2010) Materials 3(7):3948–3964

51. Scurr DJ, Horlacher T, Oberli MA, Werz DB, Kroeck L, Bufali

S, Seeberger PH, Shard AG, Alexander MR (2010) Langmuir

26(22):17143–17155

52. Yang J, Mei Y, Hook AL, Taylor M, Urquhart AJ, Bogatyrev

SR, Langer R, Anderson DG, Davies MC, Alexander MR (2010)

Biomaterials 31(34):8827–8838

53. Sanni OD, Wagner MS, Briggs D, Castner DG, Vickerman JC

(2002) Surf Interface Anal 33(9):715–728

54. Lhoest JB, Wagner MS, Tidwell CD, Castner DG (2001) J

Biomed Mat Res 57(3):432–440

55. Wagner MS, Castner DG (2001) Langmuir 17(15):4649–4660

56. Ferrari S, Ratner BD (2000) Surf Interface Anal 29(12):837–844

57. Wagner MS, McArthur SL, Shen M, Horbett TA, Castner DG

(2002) J Biomat Sci Poly Ed 13(4):407–428

Page 10 of 12 Biointerphases (2012) 7:49

123

http://dx.doi.org/10.1021/070509
http://dx.doi.org/10.1016/0142-9612(03)00159-5
http://dx.doi.org/10.1002/2382


58. Kempson IM, Martin AL, Denman JA, French PW, Prestidge

CA, Barnes TJ (2010) Langmuir 26(14):12075–12080

59. Henry M, Dupont-Gillain C, Bertrand P (2003) Langmuir

19(15):6271–6276

60. Xia N, Castner DG (2003) J Biomed Mater Res A

67(1):179–190

61. Xia N, May CJ, McArthur SL, Castner DG (2002) Langmuir

18(10):4090–4097

62. Mouhib T, Delcorte A, Poleunis C, Henry M, Bertrand P (2010)

Surf Interface Anal 42(6–7):641–644

63. Park J-W, Cho I-H, Moon DW, Paek S-H, Lee TG (2011) Surf

Interface Anal 43(1–2):285–289

64. Baugh L, Weidner T, Baio JE, Nguyen P-CT, Gamble LJ,

Stayton PS, Castner DG (2010) Langmuir 26(21):16434–16441

65. Wang H, Castner DG, Ratner BD, Jiang SY (2004) Langmuir

20(5):1877–1887. doi:10.1021/035376

66. Liu F, Dubey M, Takahashi H, Castner DG, Grainger DW

(2010) Anal Chem 82(7):2947–2958. doi:10.1021/902964

67. Dubey M, Emoto K, Cheng F, Gamble LJ, Takahashi H, Gra-

inger DW, Castner DG (2009) Surf Interface Anal 41(8):645–652

68. Takahashi H, Emoto K, Dubey M, Castner DG, Grainger DW

(2008) Adv Func Mater 18:2079

69. Dubey M, Emoto K, Takahashi H, Castner DG, Grainger DW

(2009) Adv Func Mater 19:3046–3055

70. Scoutaris N, Hook AL, Gellert PR, Roberts CJ, Alexander MR,

Scurr DJ (2012) J Mater Sci Mater Med 23:385–391

71. Urquhart A, Anderson DG, Taylor GP, Alexander MR, Langer

R, Davies MC (2007) Adv Mater 19:2486–2491

72. Veiseh M, Wickes BT, Castner DG, Zhang M (2004) Bioma-

terials 25:3315–3324

73. Fletcher JS, Henderson A, Jarvis RM, Lockyer NP, Vickerman

JC, Goodacre R (2006) Appl Surf Sci 252(19):6869–6874

74. Al-Bataineh SA, Jasieniak M, Britcher LG, Griesser HJ (2008)

Anal Chem 80:430–436

75. Schilke KF, McGuire J (2011) J Coll Int Sci 358(1):14–24

76. Cheng XH, Canavan HE, Graham DJ, Castner DG, Ratner BD

(2006) Biointerphases 1(1):61–72

77. Michel R, Pasche S, Textor M, Castner DG (2005) Langmuir

21:12327–12332

78. Tuccitto N, Giamblanco N, Marletta G, Licciardello A (2008)

Appl Surf Sci 255(4):1075–1078

79. Auditore A, Tuccitto N, Quici S, Marzanni G, Puntoriero F,

Campagna S, Licciardello A (2004) Appl Surf Sci

231–232:314–317

80. Graham DJ, Price DD, Ratner BD (2002) Langmuir

18(5):1518–1527

81. Graham DJ, Ratner BD (2002) Langmuir 18(15):5861–5868

82. Deslandes A, Jasieniak M, Ionescu M, Shapter JG, Fairman C,

Gooding JJ, Hibbert DB, Quinton JS (2009) Surf Interface Anal

41(3):216–224

83. Hart B, Biesinger M, Smart RSC (2006) Miner Eng

19(6–8):790–798

84. von Gradowski M, Jacoby B, Hilgers H, Barz J, Wahl M,

Kopnarski M (2005) Surf Coat Tech 200(1–4):334–340

85. Lau Y-TR, Weng L-T, Ng K-M, Chan C-M (2010) Anal Chem

82(7):2661–2667

86. Mishra G, Easton CD, McArthur SL (2009) Langmuir

26(5):3720–3730

87. McArthur SL, Wagner MS, Hartley PG, McLean KM, Griesser

HJ, Castner DG (2002) Surf Interface Anal 33(12):924–931

88. Awaja F, Gilbert M, Kelly G, Fox B, Brynolf R, Pigram PJ

(2010) ACS Appl Mater Interfaces 2(5):1505–1513

89. Sarra-Bournet C, Poulin S, Piyakis K, Turgeon S, Laroche G

(2010) Surf Interface Anal 42(2):102–109

90. Médard N, Poleunis C, Eynde XV, Bertrand P (2002) Surf

Interface Anal 34(1):565–569

91. Lau Y-TR, Weng L-T, Ng K-M, Chan C-M (2011) Surf Inter-

face Anal 43(1–2):340–343

92. Vanden-Eynde X, Bertrand P (1997) Surf Interface Anal

25:878–888

93. Coullerez G, Lundmark S, Malmström E, Hult A, Mathieu HJ

(2003) Surf Interface Anal 35(8):693–708

94. Médard N, Benninghoven A, Rading D, Licciardello A, Audi-

tore A, Duc TM, Montigaud H, Vernerey F, Poleunis C, Ber-

trand P (2003) Appl Surf Sci 203–204:571–574
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