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The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface
is of fundamental importance for a broad range of applications in biotechnology. The adsorption free
energy for these types of interactions can be determined from a molecular dynamics simulation
using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling
of both states is obtained. However, if interactions between the solute and the surface are strong, the
solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption
free energy from being calculated by this method. This situation occurs even when using an
advanced sampling algorithm such as replica-exchange molecular dynamics �REMD�. In this paper,
the authors demonstrate the fundamental basis of this problem using a model system consisting of
one sodium ion �Na+� as the solute positioned over a surface functionalized with one negatively
charged group �COO−� in explicit water. With this simple system, the authors show that sufficient
sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone.
The authors then present a method to overcome this problem through the use of an adaptive
windowed-umbrella sampling technique to develop a biased-energy function that is combined with
REMD. This approach provides an effective method for the calculation of adsorption free energy for
solute-surface interactions. © 2008 American Vacuum Society. �DOI: 10.1116/1.2840054�

I. INTRODUCTION

The adsorption behavior of a biomolecule, such as a pep-
tide or protein, to a functionalized surface is of fundamental
importance for a broad range of applications including bio-
materials for implant1–4 and drug-delivery applications,5,6

biosensors,7,8 and bioseparations.9 Molecular simulation pro-
vides a very powerful tool to study these types of interac-
tions theoretically at the atomic level for the calculation of
structural, thermodynamic, and kinetic parameters at the
solute-surface interphase.4,10,11 We are particularly interested
in the calculation of the free energy of solute adsorption in
an aqueous solution. The accurate calculation of adsorption
free energy requires sufficient sampling of both the confor-
mational space of the solute and its position with respect to
the surface as a function of the surface separation distance
�SSD�.

The determination of thermodynamic properties by mo-
lecular simulation can be accomplished using either molecu-
lar dynamics �MD� or Monte Carlo �MC� methods to sample
the phase space of the molecular system of interest.12 MC
methods are often more efficient for the determination of
gas- or condensed-phase thermodynamic properties of rela-
tively simple molecular systems.13 Also, because of the abil-
ity to make nonphysical moves, they are particularly useful

for the conformational sampling of macromolecules either in
isolation,14–17 with continuum solvent approximations,16,18 or
which are restricted to conformational moves within a de-
fined lattice.14,19,20

MC sampling, however, can be problematic for macro-
molecules within explicitly represented solvent because the
surrounding solvent molecules tend to severely restrict the
ability to make conformational moves of the macromolecule
without overlapping atoms of the solvent, thus leading to
unacceptably high energy levels and poor sampling
efficiency.12,21 MD simulation methods are therefore more
often used to simulate these types of systems, with sampling
moves then controlled by the laws of Newtonian dynamics.
Because we are interested in the behavior of peptides and
proteins in explicitly represented physiological saline solu-
tion, we have primarily focused our efforts on the develop-
ment and application of methods for the determination of
adsorption free energy using MD simulations.

In a previous study, we attempted to perform conventional
MD simulations with the probability-ratio method22 to calcu-
late the adsorption free energy of a model peptide on func-
tionalized self-assembled monolayer �SAM� surfaces.11 Use
of the probability-ratio method for the calculation of adsorp-
tion free energy requires that adequate sampling be achieved
over the entire SSD space, with the SSD parameter extend-
ing far enough from the surface such that the solute no
longer feels the effects of the surface �defined here as SSD��,
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thus representing bulk solution conditions. The probability of
the peptide being at a particular SSD position, SSDi, relative
to the probability of it being in the bulk solution �SSD�� can
then be used to calculate the relative free energy of the pep-
tide as a function of SSD. The relative free energy values can
be integrated over the SSD coordinate with proper weighting
by their probability density to calculate the overall adsorp-
tion free energy.11 The results from this previous study
clearly demonstrated that the application of a conventional
MD simulation approach to this type of molecular system
resulted in two types of sampling problems, both of which
inhibit the accurate calculation of adsorption free energy: �1�
trapping of the peptide near the surface if strong peptide-
surface interactions occur, which prevents the calculation of
a relative probability at SSD�, and �2� limited sampling of
the peptide’s own conformation space due to the presence of
the relatively high energy barriers separating local low-
energy minima of the dihedral angles of the peptide. These
deficiencies clearly indicate that more advanced types of
sampling are needed for the calculation of adsorption free
energy for this type of molecular system.

Efficient conformational sampling of a solute molecule in
solution or at a surface can be provided through the use of
advanced sampling methods that enable relatively high
potential-energy barriers separating local low-energy states
to be readily crossed, such as those separating dihedral rota-
tions of a peptide chain. Conventional temperature-based
replica-exchange molecular dynamics �REMD� methods
have been shown to be fairly efficient in overcoming this
type of sampling problem.23,24 However, for the situation
where a sampling problem exists due to the need to sample
states with relatively large differences in free energy, such as
when strong interactions occur between a solute and a
surface,11,25 a solute will still tend to become trapped within
a tight range of SSD values close to the surface even in a
REMD simulation. This occurs because the resulting
Boltzmann distribution of sampled states will still over-
whelmingly favor the low free-energy states. The high-lying
states may be sampled by the high-temperature replicas, but
will not be represented in the Boltzmann ensemble at the
temperature of interest generated by the lowest-temperature
replica �see Fig. 1�. Other types of advanced sampling algo-
rithms, such as biased-energy methods,26,27 are better suited
to address this particular type of sampling problem. How-
ever, although readily applicable to problems dealing with a
single coordinate of interest, such as SSD, biased-energy
methods generally become too complex for practical imple-
mentation when attempts are made to address multiple coor-
dinate dimensions, such as controlling both SSD and peptide
conformational sampling at the same time. In this paper, we
present a biased-energy REMD method that we developed
and applied to overcome both of these sampling problems in
a single simulation for the calculation of the adsorption free
energy of solute-surface interactions.

To demonstrate this type of problem at a fundamental
level, we investigated the behavior of a relatively simple
solute-surface system consisting of one sodium ion �Na+�

over a functionalized alkanethiol self-assembled monolayer
�SAM� surface presenting one negatively charged carboxy-
late �COO−� group in explicit water. This system serves to
illustrate the shortcomings of the conventional REMD
method for this type of sampling problem, while retaining
the most important characteristics of the system; i.e., a strong
solute-surface interaction that results in a relatively deep en-
ergy well that tends to trap the solute close to the surface. It
is taken for granted in our study that REMD is able to pro-
vide sufficient conformational sampling of a solute, as this
has been shown in numerous previous studies related to pep-
tide folding.23,24 The single-ion adsorption system was pur-
posely selected to eliminate the need for conformational
sampling of the solute to allow focus to be placed on adapt-
ing the REMD method to overcome the SSD-sampling prob-
lem. We demonstrate that sufficient sampling along the SSD
as a degree of freedom cannot be obtained by conventional
REMD alone for this system. We then show that an effective
biased-energy function can be developed using an adapted
windowed-umbrella sampling method that we have devel-
oped for this application. When combined with REMD, this
method can overcome this problem and enable sufficient
sampling to be achieved over the full range of SSD space for
the accurate calculation of adsorption free energy for solute-
surface interactions.

II. METHODS

A. Overview of advanced sampling methods

The probability-ratio method22 is a standard statistical me-
chanics technique that can be used for constructing a poten-

FIG. 1. Illustration of two different situations that lead to sampling prob-
lems. �a� Two states ��1 and �2� with relatively small differences in free
energy, �G12, separated by a relatively large free-energy barrier, �Ga. A
typical MD simulation will not be able to cross the energy barrier within a
reasonable simulation time if �Ga�kBT, and thus will sample only one or
the other, but not both states. A conventional REMD simulation can effec-
tively sample this type of system by using elevated temperatures to enable
this barrier to be readily crossed. The two states will still be sampled ac-
cording to a Boltzmann distribution, with the probability of sampling state
�1 relative to that of sampling state �2 given by P12=P��1� /P��2�=exp�
−�G12 /kBT�. For example, for a free energy difference of 2 kcal/mol, the
relative sampling probabilities at 310 K are P12=27:1, with both states thus
being well sampled in the simulation. �b� Two states ��1 and �2� with
relatively large differences in free energy separated by a relatively large free
energy barrier. In the case where �G12�kBT, a conventional REMD simu-
lation is ineffective in sampling the system because the resulting Boltzmann
distribution will mean that state �2 is sampled at a much lower probability
than state �1 in the low-temperature replica. For example, with a free energy
difference of 9 kcal/mol, the relative sampling probabilities at 310 K are
P12=exp�−�G12 /kBT�=2.6�106:1, with the higher free energy state thus
being insufficiently sampled for any simulation with less than many millions
of time steps.
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tial of mean force �PMF� profile �equivalent to a free energy
profile� to characterize an adsorption process. This method
relates the PMF to the natural logarithm of the probability
density of sampled states, P���, as a function of a predefined
reaction coordinate as follows:

W��� = − kBT ln�P���� , �1�

where � denotes the reaction coordinate, W is the PMF value
at �, kB is Boltzmann’s constant, and T is the absolute tem-
perature.

The precision of this method depends heavily on the suf-
ficient and adequate estimation of P���. The estimation of
this function, however, is known to be problematic for con-
ventional MD and Monte Carlo simulations.11,28,29 This is
due to the fact that energetic barriers or entropic bottlenecks
may not be sampled sufficiently in a simulation of finite
duration, because of their high free energy, which may then
prevent the sampling of the low free-energy states that are
separated by these conditions. In addition, molecular con-
figurations with relatively high free energy may also need to
be sampled, as in the case of solute adsorption, so that the
relative differences in free energy between the high and low
free-energy states can be calculated.

Since the 1970s, this problem has attracted a large amount
of attention and many excellent simulation protocols have
been proposed to overcome this limitation.30–32 The basic
concept behind these algorithms is that of biasing the statis-
tical mechanical factors that control the Boltzmann probabil-
ity distribution of the system, thus causing the rare events to
occur much more frequently in a simulation so they can be
sufficiently sampled in the simulation trajectory. This is ac-
complished by multiplying the probability density function,
P���, with a reweighting factor that effectively adjusts the
probability density of a rare event as follows:

P���� = ���� � P��� , �2�

where ���� is the reweighting factor, P���� is the adjusted
probability measure, which is non-Boltzmann, and P��� is
the original Boltzmann-weighted probability density func-
tion. The simulation is then performed on the adjusted, or
reweighted, probability basis, and the original, unbiased
probability measure can subsequently be calculated from the
resulting biased probability distribution as

P��� = ����−1 � P���� . �3�

Collectively, all of the protocols that use a reweighting factor
to improve the sampling efficiency are non-Boltzmann algo-
rithms and procedures based on this class of algorithms are
called non-Boltzmann sampling methods.

1. Construction of reweighting factors

Broadly, there are two different ways to apply the non-
Boltzmann reweighting. The Boltzmann distribution33 is a
function both of the energy of the state �, E���, as well as
the temperature T at which the sampling is performed,

P��� = �e−�E���, �4�

where � is a normalization constant �which also accounts for
the degeneracy of the state�s� represented by � and �
= �kBT�−1�. Thus, in modifying the Boltzmann probabilities,
one common approach is to modify the temperature, with the
simulation performed at a biased �usually higher� tempera-
ture; the other is to modify the system Hamiltonian �usually
through an add-on “umbrella” potential� so that the simula-
tion is performed with a biased potential energy. It less con-
venient to bias the distribution via the degeneracy of a par-
ticular state, because, unlike temperature and potential
energy, the degeneracy does not explicitly enter into the mo-
lecular dynamics simulation algorithm �and is typically not
known a priori�. We describe both types of non-Boltzmann
reweighting factors in detail in the following subsections.

2. Umbrella-potential-based reweighting factors

If we denote a biasing potential as Eb���, then from the
fundamental Eq. �4�, the probability of being in configura-
tional state � for the nonbiased case can be expressed as

P��� = �e−�E��� �5�

and, for a biased case, the probability can be expressed as

Pb��� = �e−�Eb���. �6�

The reweighting factor can then be written as

���� = Pb���/P��� , �7�

which, after substitution of Eqs. �5� and �6� into Eq. �7�,
yields

���� = e−��Eb���−E���� = e−��E. �8�

This type of reweighting factor is utilized in umbrella
sampling26,34,35 and adaptive umbrella sampling27,36–38 meth-
ods.

3. Temperature-based reweighting factors

The construction of temperature-based reweighting fac-
tors follows a very similar mathematical procedure as the
umbrella potential-based methods. From the fundamental
Boltzmann statistics in Eq. �4�, given two different inverse
temperatures �1 and �0, the probabilities of being in a con-
figurational state � with energy E��� can be expressed re-
spectively as

P�1
��� = �e−�1E��� �9�

and

P�0
��� = �e−�0E���. �10�

A reweighting factor can then be expressed as

���� = P�1
���/P�0

��� . �11�

Substituting the expressions of Eqs. �9� and �10� into Eq.
�11� gives
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���� = e−��1−�0�E��� = e−��E���. �12�

This class of reweighting factor forms the basis of several
advanced sampling and analysis methods, including single
histogram analysis,22 multiple-histogram analysis,39,40 the
multicanonical algorithm,41,42 replica-exchange
methods,42–44 and temperature-weighted histogram-analysis
methods.45

As indicated by their mathematical similarity, both the
energy- and temperature-based methods effectively perturb
the probability distribution that is obtained during an MD
simulation, one by artificially reducing the energy levels
separating the configurational states and the other by provid-
ing increased thermal energy to the system; both of which
effectively result in a situation where transitions between
states occur at a higher frequency, thus substantially improv-
ing sampling.

B. Model molecular system

The molecular system selected for this study is shown in
Fig. 2. It consists of only one sodium counter-ion �Na+� in
TIP3P water46 over a COOH-functionalized alkanethiol self-
assembled monolayer �SAM� surface47 consisting of 90
chains with a single deprotonated chain �i.e., -COO−� posi-
tioned in the center of the surface to create a negatively
charged surface group to strongly attract the sodium ion
through electrostatic attraction. All atoms of the SAM sur-
face were constrained to prevent them from moving, except
for the top layer of the carboxylic acid functional groups
�and central carboxylate group� in order to keep the SAM
intact during the subsequent REMD simulations at elevated
temperatures. The 3-D periodic unit cell was orthogonal with
dimensions 44.73�43.04�60.00 Å3. The top 15.0 Å layer
of the water box was constructed from a preequilibrated

layer of bulk water, which was then placed at the top of the
simulation cell and constrained to remain fixed. This was
done to prevent the imaged hydrophobic bottom surface of
the SAM layer from perturbing the water structure in this
part of the model, which may in turn influence the behavior
of the sodium ion as it approached the top of the simulation
cell. By design, this provides a model system where the sol-
ute is so strongly attracted to the surface that the SSD be-
tween the Na+ and the SAM surface during a conventional
MD simulation remains within a narrow range within about
3.0 Å of the surface, thus exhibiting a substantial sampling
problem. Furthermore, by selecting a single ion species as
the solute, complications related to the question of confor-
mational sampling of the solute itself in solution are avoided,
with the simulations thus focusing solely on the problem of
addressing the sampling limitation due to energy differences
as a function of the SSD reaction coordinate.

This model system was used in a series of simulations to
demonstrate that a substantial sampling problem exists with
such electrostatically charged aqueous adsorption systems
such that the 310 K adsorption free energy cannot be prop-
erly determined from the trajectory data for simulations of
reasonable length, even when performing a conventional
REMD simulation. We then demonstrate that this problem
can be overcome by combining a biased-energy function
with the REMD algorithm to perform a biased-energy
REMD simulation, with the resulting trajectory data then
providing sufficient sampling for the calculation of adsorp-
tion free energy.

C. Conventional REMD simulation

REMD is one of the most widely applied temperature-
based reweighting methods that has been used for peptide
folding simulations because of its extreme versatility and
relative simplicity in application. Sugita and Okamoto23 pre-
sented the first paper that describes the molecular dynamics
version of this replica exchange method in 1999. They
pointed out that the major advantage of REMD over other
generalized-ensemble methods, such as the multicanonical
algorithm and simulated tempering, lies in the fact that the
reweighting factor is automatically generated during the
simulation, while in the latter algorithms the determination
of the reweighting factor requires relatively laborious itera-
tive methods. REMD also provides a great advantage over
umbrella potential-based reweighting algorithms in that it
operates on all degrees of freedom of the system simulta-
neously without requiring that a specific reaction coordinate
be defined. A brief overview of the most important features
of this method is provided here and readers are referred to
the original paper by Sugita and Okamoto23 for its rigorous
formulation.

A REMD simulation results in the construction of a
Boltzmann-weighted ensemble of states by generating inde-
pendent trajectories at different temperatures, Tm�m
=1, . . . ,Nr�, with Nr being the number of temperature levels,
or replicas, represented in the overall simulation. During the
simulation, each replica at its designated temperature level is

FIG. 2. Model system designed for testing the biased-REMD sampling
method in comparison to the conventional REMD method. It consists of a
single sodium ion in TIP3P water over a carboxylic acid-functionalized
SAM surface with one ionized COO− functional group in the middle of the
surface to strongly attract the sodium ion. The surface separation distance
�SSD� represents the distance between the sodium ion in solution and the
carboxylate group on the surface.
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run in an independent manner for a short period of time
�typically between 100 and 1000 fs�, following which com-
parisons are made between the potential energy of the replica
at temperature Ti and the replica at the next higher tempera-
ture Tj. An exchange attempt is then made using a
Metropolis-based criterion, which is described by

If: Ej − Ei 	 0, then exchange replicas; �13�

if: Ej − Ei 
 0, then exchange replicas if

RAND�0 − 1� 	 e−��i−�j��Ej−Ei�,

where RAND�0−1� indicates a random number between 0
and 1, inclusively. If this exchange condition is satisfied, the
atomic position and momentum coordinates between replicas
at Ti and Tj are exchanged and the momentum coordinates
�p�Ti�and p�Tj�� are updated by

p�Ti� =�Ti
Tj
p�Tj�, p�Tj� =�Tj

Ti
p�Ti� �14�

to rapidly adjust each replica to its new temperature level.
The temperatures of each replica are typically spaced in an
exponential manner over the designated temperature range,
with the width of the temperature intervals set to achieve an
exchange acceptance level of between 0.15 and 0.20.23

Enhanced sampling is provided by a REMD simulation
because of both the large number of independent replicas
that are sampling different configurational states of the sys-
tem and the additional thermal energy provided at the higher
temperature levels, which greatly increases the probability of
crossing the energy barriers that separate the different states
of the system. The Metropolis criterion then effectively ap-
plies the temperature reweighting factor to control the sam-
pling process. Once properly equilibrated, the REMD proce-
dure provides a Boltzmann-weighted sampling of states at
each temperature. When such a simulation is continued for a
sufficiently long time �typically for at least several nanosec-
onds� over a sufficiently large range of temperature, it per-
mits sampling across barriers that could not be overcome at
the low temperature alone within a reasonable time frame.
As shown below, however, the REMD method does not solve
all of the sampling problems that are encountered for a
solute-adsorption process. Because it generates a Boltzmann-
weighted ensemble of states at a given temperature level, it
still exhibits sampling problems for events that normally oc-
cur with low probability. To demonstrate this limitation, we
conducted a conventional REMD simulation on the model
Na+ /water /SAM system described in Sec. II A.

In our REMD simulation, we used 21 replicas spanning a
temperature range from 310 K to 400 K, with the tempera-
ture levels distributed exponentially as recommended to ob-
tain near-uniform rates of exchange between adjacent tem-
perature levels.23 Simulations were run using the CHARMM
molecular simulation program48,49 and the CHARMM27
force field,48,49 with the REMD algorithm applied using a
Python module designed by our group as a peripheral to
CHARMM. The system was controlled with a constant num-
ber of atoms �N�, under constant volume �V�, and constant

temperature �T� conditions using a Berendsen thermostat
�i.e., in the canonical �NVT� ensemble� with periodic bound-
ary conditions. Both van der Waals and electrostatic interac-
tions were handled using a 12−14 Å switching function-
based cut-off.49,50 Cut-offs were used for electrostatic
interactions as opposed to particle-mesh Ewald to prevent
unphysical interactions between the sodium ion and periodic
images of the charged SAM surface. Simulations were car-
ried out for 5.0 ns at each of the designated temperature
levels using the Verlet integrator with a 2 fs time step and
bond length constraints applied to all bonds using
SHAKE.48,49 Exchanges between neighboring temperatures
were attempted every 1.0 ps using the criterion shown above
in Eq. �13�. The trajectory results generated from the REMD
simulation were then analyzed to describe the resulting prob-
ability distribution of the sampled SSD space, which was
then converted to a PMF profile using the probability-ratio
method.22

D. Adaptive windowed-umbrella sampling

If the shape of the free energy surface is known a priori
for a reaction coordinate of interest, then the negative of this
surface, when applied as a biasing function, will result in a
flattened trajectory with every state exhibiting the same
probability of occurrence.23,51 Unfortunately a priori knowl-
edge of the free energy surface is rarely available for a sys-
tem of practical interest. Windowed-umbrella sampling by-
passes this shortcoming by dissecting the reaction coordinate
into a series of overlapping regions, or “windows,” and as-
signing each window a defined harmonic restraining poten-
tial that forces sampling to occur around a specified region;
usually with the following form:

Hb =
k

2
�� − �i�2, i = 1,2, . . . NW, �15�

where Hb denotes the harmonic biasing potential that is
added to the force field equation, k is the harmonic spring
constant, � is value of the reaction coordinate �SSD in our
case�, �i denotes the middle point of the ith window, and NW
is the total number of windows sampled. An independent
canonical simulation is then performed for each separate
window and the results are combined and then analyzed us-
ing the weighted-histogram analysis method
�WHAM�,39,40,45 which enables a PMF profile to be calcu-
lated as a function of the underlying reaction coordinate over
its full range of values. The resulting profile is then fit by an
appropriate curve-fitting function that is continuous and dif-
ferentiable, in order to form the biasing-energy function.

The traditional approach for the development of the
curve-fitting function for the PMF profile is to use a combi-
nation of both polynomial and triangular functions to inter-
polate the discrete results from the WHAM analysis. How-
ever, taking into account the specific characteristics of our
system, i.e., surface adsorption, we developed a more effi-
cient approach for this based on the Derjaguin, Landau, Ver-
wey, Overbeek �DLVO� theory.52,53 DLVO theory represents
the adsorption free energy profile with a combination of elec-
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trostatic and van der Waals interactions that underlie an ad-
sorption process. These interactions typically follow the re-
lationship as shown in Fig. 3, which can be approximated
with a functional form of

PMFDLVO�r� = a�r − ro�−1 + b�r − ro�−6 + c�r − ro�−12 + d ,

�16�

where the first term accounts for electrostatic interactions,
the second and third terms account for the attractive and
repulsive van der Waals interactions, respectively, r �or SSD
for our case� represents the distance of the ion from the sur-
face, and a, b, c, d, and ro are all coefficients obtained from
least-squares fitting of the PMF versus SSD profile results
from a WHAM analysis of the simulation trajectories.

For our specific studies, windowed-umbrella sampling
�WUS� simulations were performed by dividing the overall
SSD space for the system into a series of 30 windows with a
window spacing of 1.0 Å and with k=1.0 kcal /mol /Å �see
Eq. �15��. MD simulations were conducted under conditions
similar to those described for the conventional REMD simu-
lation. In the present study, we have developed a computa-
tionally efficient approach to WUS, which we call adaptive
windowed-umbrella sampling �AWUS�. In this method, we
conduct a series of short 200 ps WUS simulations with the
results of each simulation being used in an iterative manner
to generate the converged PMF profile.

Accordingly, a 200 ps WUS simulation was first con-
ducted with our molecular system and WHAM analysis was
applied to approximate the shape of the PMF potential over
the full range of SSD-coordinate space. Equation �16� was
then fitted to the resulting PMF profile to develop an equa-
tion expressing the PMF as a function of SSD. The negative
of the calculated PMF versus SSD profile was then used as a
biasing-energy function for each window �in addition to the
harmonic umbrella potential� and a new series of 200 ps
WUS simulations was run. A WHAM analysis was again
performed on the resulting SSD-trajectory data and used to
generate a residual PMF profile from the biased-energy
simulation data. The residual PMF profile was then evaluated
for its flatness, which provided an indicator of how closely
the applied biased-energy profile negates the true underlying
PMF profile of the system �i.e., if perfectly matched and

adequately sampled, the PMF profile for a biased-energy
WUS simulation would be zero for all SSD values�. If not
sufficiently flat �i.e., absolute value 	2 kcal /mol for all
SSD positions�, a new estimate of the unbiased PMF poten-
tial was generated and a new DLVO versus SSD function
was fit to the PMF profile and applied as the biased-energy
function in another series of WUS simulations. This process
was continued until the resulting residual PMF profile was
considered to be sufficiently flat, thus indicating that the ap-
plied biased-energy potential was an adequate representation
of �the negative of� the underlying PMF profile of the sys-
tem. This biasing potential was then used for the subsequent
biased REMD simulation.

The AWUS method has two advantages over simpler ap-
plications of WUS. First, it helps to ensure that a converged
PMF is obtained with the minimum amount of sampling
time. Second, it is more amenable to parallelization on a
heterogeneous computer cluster, as the granularity of the
simulations is smaller.

E. Biased-REMD simulation

Biased-REMD is a hybrid non-Boltzmann sampling
method, which implements a biased potential energy func-
tion within an otherwise conventional REMD simulation to
simultaneously overcome the two types of sampling prob-
lems illustrated in Fig. 1: �1� the need to readily cross rela-
tively high energy barriers separating states with similar en-
ergy levels, which is provided by REMD, and �2� the need to
sample states spanning a relatively large range of energy
levels, which is provided by the biasing potential. In this
protocol, the negative of the final PMF versus SSD profile
generated from the AWUS method is used in a subsequent
REMD simulation as a biasing potential for every replica.

Accordingly, for our simulations, we first generated the
PMF profile from the AWUS simulation as described in Sec.
II D. We subsequently conducted a REMD simulation fol-
lowing the same procedures as described in Sec. II C for the
conventional REMD simulation, except that the negative of
the PMF profile from the AWUS method was added to the
potential energy function, thus performing a biased-REMD
simulation. The resulting biased trajectory was then analyzed
using the WHAM method and corrected for the biased en-
ergy function to obtain the final unbiased PMF profile, which
represents the free energy of the system over the entire range
of SSD space. These results were then compared to those
obtained from the conventional REMD simulation to demon-
strate the effectiveness of this hybrid non-Boltzmann sam-
pling method.

III. RESULTS AND DISCUSSION

A. Conventional REMD simulation

A conventional �i.e., unbiased� REMD simulation was
conducted as described in Sec. II C for comparison with
biased-REMD results. Table I shows the neighboring replica
temperature pairs and the corresponding acceptance ratios
�middle column� obtained for this simulation. Statistically,

FIG. 3. Typical curve shape represented by the potential of mean force
�PMF� profile as a function of the surface separation distance �SSD� using
the DLVO-type relationship shown in Eq. �16�.
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the acceptance ratios were distributed around a mean of �
=0.18 with standard deviation of =0.03, thus showing that
an adequate level of exchange was achieved between all
neighboring temperature levels.

Figure 4�a� presents a plot showing which replica occu-
pied the lowest temperature level �310 K� over the 5 ns con-
ventional REMD simulation. This plot demonstrates that a
random walk across the designated temperature space was
satisfactorily obtained, with nearly every replica visiting the
310 K temperature level during the course of the 5 ns REMD
simulation. Figure 4�b� presents the resulting histogram of
the SSD space sampled during this simulation and Fig. 4�c�
presents the resulting box-plot statistical analysis54,55 of the
histogram. The box-plot method of representation is used

here to provide a simple graphical representation of the over-
all degree of statistical sampling that was achieved during
the simulation. As indicated in Fig. 4�c�, a box-plot shows
the median of the population �thick line inside the box�, the
first �Q1� and third quartiles �Q3� of the sampled states about
the mean �box around the median�, range bars �lines or
“whiskers”� above and below the quartile boxes, and popu-
lation outliers �dotted points outside of the range bars; see
the caption for Fig. 4�c��. These results show that the posi-
tion of the sodium ion was primarily restricted to be within
about 7.0 Å from the SAM surface, thus clearly demonstrat-
ing that a substantial sampling problem occurred in this
simulation.

B. AWUS smulation

The dashed line in Fig. 5�a� represents the first iteration of
the AWUS method. In this iteration, no DLVO-type biasing
potential was applied in the simulation; only harmonic um-
brella potentials �i.e., Eq. �15�� were applied to each window
in the simulation to keep sampling centered about the central
SSD position of each of the windows. The resulting PMF
profile was constructed with WHAM and fitted with the
DLVO-type functional form �Eq. �16��. This initial estimate
of the PMF had a minimum near 2.7 Å with a well depth of
about −4.3 kcal /mol. From our experience with this ap-
proach, the first iteration using this AWUS method generally
results in the depth of the PMF profile being substantially
underestimated, due to insufficient sampling of the high free
energy states in the absence of a biasing potential. While
repeated iterations can be used to converge the PMF profile,
we have found that this process can be shortened by three or
four iterations by simply amplifying the results of the first
200 ps iteration prior to conducting the second iteration at-
tempt. Thus, to accelerate this iterative process, the DLVO-
type fitting function obtained from Fig. 5�a� �solid line� was
subjectively multiplied by a factor of about 4, and the nega-

TABLE I. Temperature-level pairs and the associated acceptance ratios for
both the conventional and the biased-REMD simulations.

Temperature pairs Ti−Tj
�K�

Conventional REMD
acceptance ratio

Biased-REMD
acceptance ratio

310–313 0.204 0.259
313–318 0.107 0.075
318–322 0.176 0.156
322–326 0.173 0.149
326–330 0.187 0.179
330–334 0.174 0.162
334–338 0.179 0.180
338–343 0.153 0.120
343–347 0.191 0.193
347–352 0.160 0.129
352–356 0.186 0.189
356–361 0.156 0.136
361–365 0.221 0.208
365–370 0.196 0.149
370–375 0.173 0.152
375–380 0.187 0.148
380–384 0.233 0.229
384–389 0.206 0.187
389–394 0.181 0.156
394–400 0.119 0.088

Mean�std. dev. 0.18�0.03 0.16�0.04

FIG. 4. �a� Time series replica diffusion for the 5 ns conventional �unbiased�
REMD simulation. Dark dashes indicate which of the 21 replicas occupied
the 310 K temperature level at a given point in time. �b� Histogram showing
the degree of sampling for each increment of SSD space. �c� Box-plot sta-
tistical analysis of the histogram presented in �b� showing the median �thick
line in box�, first �Q1� and third quartiles �Q3� �box around the median�,
range bars �lines �whiskers� above and below the box, lower range	Q1
−1.5 �Q3−Q1�, upper range	Q3+1.5 �Q3−Q1��, and population outli-
ers �dotted points outside of the range bars�.

FIG. 5. Development of the biased energy function by the AWUS iterative
method. �a� The PMF vs SSD profile provided by the initial 200 ps simula-
tion with no biasing energy applied �dashed line� and the best fit of the
DLVO function �Eq. �16�� to the data plot �solid line�. �b� Revised estimate
of PMF vs SSD profile based on the sampling from two 200 ps simulation
iterations �lower dashed line� and the best fit of the DLVO function to this
PMF profile �solid line�. The middle dashed-dotted line presents the residual
PMF vs SSD profile obtained from the third 200 ps iteration when the
best-fit DLVO function �solid line� was used to define the biased-energy
function; the residual PMF profile is now considered to be acceptably flat
�absolute value 	2 kcal /mol over the entire SSD range�. The upper dashed
curve is the negative of the best-fit DLVO function �solid line�; this repre-
sents the biased-energy function that was then applied in the subsequent
biased-REMD simulation.
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tive of this function was then used as a biasing potential for
the second iteration. The residual PMF profile obtained from
this iteration indicated that the biasing potential used in the
simulation was overly strong and that another iteration of the
process was necessary. A new estimate of the real PMF pro-
file was then generated using the WHAM analysis of the
sampling provided from the second iteration; the results of
this analysis are shown by the lower dashed line in Fig. 5�b�.
This profile was then again fitted with Eq. �16� �lower solid
line, Fig. 5�b�� to provide the biasing potential for the third
200 ps iteration of AWUS. The dashed-dotted line of Fig.
5�b� presents the residual PMF profile obtained following the
third 200 ps iteration, which represents a total of only 600 ps
of MD simulation, with the residual PMF profile then con-
sidered to be sufficiently flat �absolute magnitude of PMF
values 	2 kcal /mol� within the SSD range from 2 to 16 Å.
These results thus indicated that the process had sufficiently
converged and that the applied DLVO-based biasing function
represented a reasonable estimate of the true PMF profile of
the system. The negative of this DLVO function �upper
dashed line, Fig. 5�b�� was then used as the biasing potential
for the subsequent biased-REMD simulation. The values of
the parameters for this final functional form of the DLVO
function are provided in Table II.

C. Biased-REMD simulation

Table I �column 3� shows the acceptance ratios for each
pair of temperatures in the biased-REMD simulation. Statis-
tically, the acceptance ratios were distributed around a mean
of �=0.16 with standard deviation =0.04, thus showing
that an adequate level of exchange was achieved between all
neighboring temperature levels. Figure 6�a� presents a plot
showing which replica occupied the lowest 310 K tempera-
ture level over the 5 ns biased-REMD simulation. This plot
demonstrates that a random walk across temperature space
was satisfactorily obtained for the simulation, with nearly
every replica visiting the 310 K temperature level during the
course of the 5 ns REMD simulation. Figure 6�b� presents
the resulting histogram of the SSD space sampled during this
simulation and Fig. 6�c� presents the resulting box-plot sta-
tistical analysis54,55 of the histogram. These results clearly
show that the use of the biasing potential enabled the sodium
ion to readily escape from the surface and effectively sample
the entire range of SSD space during the 5 ns simulation, as
desired.

To address the question of whether or not the SSD histo-
gram for the biased-REMD simulation represented a con-

verged sampling distribution, the histogram from the 5 ns
biased-REMD simulation was compared with a histogram
generated following only 2 ns of simulation. Figures 7�a� and
7�b� show the histograms of the 2 and 5 ns simulations,
respectively, and Fig. 7�c� presents a box-plot statistical
comparison54,55 of these results. As shown, the results from
the 5 ns simulation agree closely with the 2 ns results, with
each distribution exhibiting a mean around �=18.6 Å with a
standard deviation of =6.1 Å, thus indicating that sam-
pling had converged even after 2 ns and that adequate sam-
pling of the system was indeed provided by the 5 ns biased-
REMD simulation.

D. PMF profile comparisons

Figure 8 compares the PMF profiles constructed from a
probability-ratio method analysis for the 5.0 ns conventional
REMD simulation �dashed line�, the 5.0 ns biased-REMD

TABLE II. Final set of DLVO parameters �Eq. �16�� for the PMF profile generated from the adaptive windowed-
umbrella sampling �AWUS� simulations.

Parameters for final PMF profile

Parameter a b c d ro

Value −27.598 −22 410 2.7575�107 1.3453 −0.77671
Units �kcal Å� /mol �kcal Å6� /mol �kcal Å12� /mol kcal/mol Å

FIG. 6. �a� Time series of replica diffusion for the 5 ns biased-REMD simu-
lation. Dark dashes indicate which of the 21 replicas occupied the 310 K
temperature level at a given point in time. �b� Histogram showing the den-
sity of sampling for each increment of SSD space. �c� Box-plot statistical
analysis of the histogram presented in �b� showing the median �thick line in
box�, first and third quartiles �box around the median�, range bars �lines
�whiskers� above and below the box, lower range	Q1−1.5 �Q3−Q1�,
upper range	Q3+1.5 �Q3−Q1��, and population outliers �dotted points
outside of the range bars�.

FIG. 7. Sampling distribution analysis for the biased-REMD simulation. �a�
Sampling histogram after 2 ns. �b� Sampling histogram after 5 ns. �c� Box-
plot statistical analyses of sampling distributions from the 2 and 5 ns histo-
grams showing the median �thick line in box�, first and third quartiles �box
around the median�, range bars lines �whiskers� above and below the box,
lower range	Q1−1.5 �Q3−Q1�, upper range	Q3+1.5 �Q3−Q1��, and
population outliers �dotted points outside of the range bars�.
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simulation �solid line�, and the simple expression of Cou-
lomb’s law �dashed-dotted red line� for an ion pair separated
by r=SSD �PMFCoul= �q1q2� / �4��o�r�, where q1 and q2 are
+1 and −1 units of electronic charge on the sodium ion and
carboxylate group, respectively, �o is the permittivity of free
space, and � is the relative dielectric constant of TIP3P bulk
water, which was taken to be 80�.56

Due to the insufficient sampling provided by the conven-
tional REMD algorithm �as evident from the histogram
shown in Fig. 4�b��, its PMF profile is substantially underes-
timated and does not contain any observations of SSD values
greater than about 15 Å. In comparison, the PMF profile
from the biased-REMD simulation was constructed with ad-
equate sampling over the full range of SSD space �as evident
from the sampling histogram shown in Fig. 6�b� with sam-
pling convergence indicated in Fig. 7�. As indicated in Fig. 8,
the resulting profile shows a relatively deep free energy well,
with the overall profile being generally in excellent agree-
ment with the theoretical prediction provided by Coulomb’s
law.

As expected, the PMF profile generated from the biased-
REMD simulation is in excellent agreement with the PMF
profile from the last iteration of the AWUS simulation shown
in Fig. 5�b�, which serves to further validate the biased-
REMD method. This occurs for this special case, however,
because the molecular system was purposely selected to
highlight the problem of SSD sampling when using the con-
ventional REMD method while avoiding unnecessary com-
plications related to solute conformational sampling. Now
that we have validated this method, it can confidently be
applied to calculate the adsorption free energy for more com-
plex solutes, such as a peptide over a functionalized surface.
For a peptide adsorption system, the REMD algorithm will
primarily provide thermal energy for enhanced conforma-
tional sampling of the peptide, while the biased-energy algo-
rithm incorporated within the REMD simulation will enable
adequate sampling to be achieved over the SSD coordinate.

IV. CONCLUSIONS

Adequate system sampling is essential if adsorption free
energy for solute-surface interactions is to be calculated from

the trajectory of a molecular dynamics simulation. As de-
scribed in this paper, this type of system inherently involves
two types of sampling problems: the need to adequately
sample the internal conformational space of the solute and
the need to sample its position over the surface, ranging from
tight adsorption to the desorbed state under bulk-solution
conditions. While a conventional REMD simulation is able
to overcome free energy barriers in order to provide adequate
conformational sampling of a solute in solution, and um-
brella sampling can be applied to ensure adequate sampling
over SSD space, neither of these methods alone is able to
overcome both types of sampling problems. However, when
a biasing potential provided by AWUS is combined with
REMD to form a biased-REMD simulation, both of these
sampling problems can be readily overcome and the free
energy profile can be confidently calculated from the result-
ing simulation trajectory.

Based on the successful development of these methods,
we are currently applying this approach to calculate the free
energy of adsorption of model peptides over SAM surfaces
presenting a wide range of surface chemistries. These values
are being compared with experimental results obtained from
surface plasmon resonance spectroscopy to assess the accu-
racy of the CHARMM force field, and to provide a basis for
force field optimization for the development of an interphase
force field that is specifically parameterized for the accurate
simulation of protein adsorption behavior on biomaterials
surfaces.
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