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A theoretical framework is developed to analyze molecular bond breaking in dynamic force
spectroscopy using atomic force microscopy �AFM�. An analytic expression of the observed bond
breaking probability as a function of force is obtained in terms of the relevant physical parameters.
Three different experimental realizations are discussed, in which �i� the force is increased linearly
in time, and �ii� the AFM cantilever is moved at constant speed, and �iii� the force is held constant.
We find that unique fitting of the bond parameters such as the potential depth and its width is
possible only when data from rather different force-loading rates is used. The complications in the
analysis of using the constant velocity mode arising from the intermediate polymer spacer are
discussed at length. © 2006 American Vacuum Society. �DOI: 10.1116/1.2188519�

I. INTRODUCTION

The molecular interactions between small molecular ag-
gregates can be manipulated in nanoarchitectures to con-
struct a molecular switch with bond forming and bond break-
ing providing the on/off states of a switch, respectively. For a
molecular bond with a binding energy E extending over a
distance d, the force needed is of the order of E /d. Thus,
controlled bond breaking can be achieved at temperatures
T�E /kB provided the applied force is controlled to better
than kBT /d. For a covalent bond we have E�eV and d
�Å so that the force is of the order of nN and must be
controlled at the level of pN.

Bond breaking implies the separation of the two molecu-
lar fragments along their reaction coordinate. For a diatomic
molecule AB the reaction coordinate is the A-B distance and
the energy surface is the intra molecular potential as a func-
tion of that distance. For a molecular switch such as the
bis-terpyridine moiety TP–Ru–TP separating into TP–Ru and
TP fragments1 their separation involves rotations relative to
each other and changes in their internal structures so that the
reaction coordinate is to be understood as the minimum en-
ergy pathway in a multidimensional coordinate space in
which the center of mass separation with local adjustments in
relative orientation is the dominant one. Excitations in the
rotational and internal vibrational degrees of freedom extend
the reaction coordinate into a multidimensional valley in the
free energy surface. The latter can and has been calculated
for many systems by first principles methods of quantum
mechanics. For a simple molecular bond the free energy
curve along the reaction coordinate has just one minimum of
depth E and width d.2 For more complex bonds that may
entail several unfolding steps before breakage further
minima at larger separations appear.3

Experimentally controlled bond breakage has been
achieved with laser tweezers and with the atomic force mi-
croscope �AFM�. A typical experiment using single-molecule

force microscopy is the recent study of the TP–Ru–TP
system1 in which the TP moieties were first linked to a poly-
�ethylene glycol� spacer which in turn was attached to the
AFM cantilever. Similarly, the spacer of a mono-complexed
TP–Ru3+ was attached to a suitably prepared surface. In the
course of the AFM experiment, the noncomplexed moieties
on the tip were brought in contact with the mono-complexed
units on the surface resulting in the formation of a bonded
bis-terpyridine moiety, TP–Ru2+–TP, in which the Ru atom is
reduced. Withdrawing the tip first stretched the spacers and
eventually led to the breaking of one of the Ru–TP bonds. In
a typical experiment the cantilever speed was around
120 nm/s which led to average bond breaking forces of the
order of 100 pN and a statistical width of the force distribu-
tion of the order of 50 pN. At this pulling speed, the canti-
lever forces the system away from equilibrium so that the
distribution of bond-breaking forces depends strongly on the
velocity used.

Several studies have been published that model dynamic
force spectroscopy as described in the last paragraph. An
initial molecular dynamics study of bond breaking in
proteins4 suggested that it might be possible to model the
reaction paths exactly for extremely fast loading rates or
pulling speeds. The most widely cited approach to model this
type of experiment was put forward by Evans and Ritchie,5

who used a simplified form of the bond potential in order to
calculate the loading-rate dependent breaking probability.
Various authors have since extended this model taking into
account rebinding,6 multiple strands,7 specific force profiles,8

and to describe experiments with a constant force loading
rate.9,10 A lot of data have been analyzed recently with the
help of Monte Carlo simulations.11

A problem that has not received enough attention con-
cerns the uniqueness of modeling any data for the purpose of
extracting underlying microscopic parameters. This will be
done in this paper by setting up an analytic theory, based
on previous work,9 that can explain breaking force distribu-
tions and can be used to extract the relevant physical param-
eters, such as activation energies, attempt frequencies and
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bond lengths, from experimental data. We will delineate a set
of criteria to ensure uniqueness of such a procedure. Concen-
trating on bond breaking with the AFM, we examine the
different experimental modes including the constant
velocity,1 the constant force-loading rate, or force ramp,12

setups, and the force-clamp mode.3

II. THEORY

We treat bond breaking by an external force as a ther-
mally activated process for which we write down an Arrhen-
ius rate equation for the probability, P�t�, that the molecule is
still intact at time t9

dP

dt
= − A exp�− ��V�f��P . �1�

Here �V�f� is the activation energy or energy difference
between the free energy minimum of the bond and the barrier
to be overcome in bond breaking under the influence of an
applied force, see Fig. 1. The prefactor A contains informa-
tion about the changes in entropy due to the breakup of the
molecule and also about the internal energy redistribution
into the bond that eventually breaks. According to transition
state theory it is given by A=
�q* /q where � is the attempt
frequency, 
 the accommodation coefficient and q* /q the
ratio of the internal partition functions of the activation com-
plex to that of the molecule in the initial state. In the simplest
scenario � can be interpreted as the attempt frequency to
break the bond, i.e., roughly that of the oscillations around
the minimum of the bond potential, which in vacuo is given
by

� =
1

2�
�2V0�

2

�
, �2�

where � is the reduced mass of the two fragments and V0 the
maximum depth of the potential. The frequency � is typically
around 1012 s−1 but it is drastically reduced in a liquid mostly
due to solvation effects. In addition, the accommodation co-
efficient is typically much smaller than unity for a reaction in
a liquid and the ratio of the partition functions is significantly

smaller than unity so that one expects A��. What is usually
measured in an experiment is not the probability of the bond
still being intact at time t but the probability that the bond is
broken at time t, Pb�t�=1−P�t�.

In the force ramp mode, the force f is increased linearly in
time with a force loading rate 	

f = f0 + 	t . �3�

Eliminating t in favor of f we rewrite the Arrhenius rate Eq.
�1� as

dP

df
= −

A

	
exp�− ��V�f��P , �4�

which can be solved analytically to give

P�f� = exp	−
A

	


f0

f

exp�− ��V�f���df�� �5�

or

P�t� = exp	− A

0

t

exp�− ��V�f0 + 	t���dt�� . �6�

We obtain the distribution of bond breaking forces by
taking the derivative of Pb�f�=1−P�f�. Its maximum gives
the most probable bond breaking force, and is obtained by
equating the second derivative of Eq. �5� to zero, which
yields

�d��V
df

�
fb

= −
A

	
exp�− ��V�fb�� . �7�

Likewise, we calculate the width of the breaking force dis-
tribution by setting the third derivative equal to zero.

To go further analytically we need to specify the bond
potential V�x� to obtain �V�f�. For a simple bond the Morse
potential is known to capture its essential features including
the all important dissociative state at large separation �which
a harmonic potential obviously does not�. In the presence of
an external potential it reads

V�x� = V0
exp�− 2��x − x0�� − 2 exp�− ��x − x0���

− f�x − x0� . �8�

Here �−1 is the range of the potential, −V0 its depth and x0

the position of its minimum. From the force-dependent local
minimum and maximum of the potential �8� we can calculate
the dissociation barrier

�V�f� = Vmax − Vmin = − f�x+ − x−� + V0
exp�− 2��x+

− x0�� − exp�− 2��x− − x0�� − 2 exp�− ��x+ − x0��

+ 2 exp�− ��x− − x0��� . �9�

The exponential argument is given by

��x± − x0� = ln 2 − ln	1 ��1 −
2f

�V0
� . �10�

Note that the barrier is not dependent on x0; fmax=�V0 /2 is
the maximum force at which the barrier goes to zero, which,

FIG. 1. Bond potential under an external force �blue, solid line� is the linear
combination of the unperturbed Morse potential �red, dashed line� and an
external force Vforce=−f�x−x0� �green, dashed line�. The resulting force-
dependent barrier is shown as �V s.
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however, can only be reached by applying the force adiabati-
cally at zero temperature. Explicitly we get for the barrier

�V/V0 = �1 − f̃ − f̃ tanh−1 �1 − f̃ , �11�

where f̃ = f / fmax. One can show that this function can be
approximated to within a few percent over its complete range

0� f̃�1 by

�V� V0�1 − f̃�2. �12�

It turns out that the approximation �12� is remarkably good
for a variety of possible bond potentials, as long as one
chooses V0 to be the depth of the unperturbed potential and
defines the dimensionless force in terms of the maximally
possible force for a given potential. For example, in the case
of a Lennard-Jones potential

V�x� = 4�	� �

x − x0
�12

− � �

x − x0
�6� �13�

we would have V0=� and fmax= �7/26�7/6�144� /13��. A cut-
off harmonic potential as it is used in the Ritchie–Evans
model satisfies Eq. �12� exactly, as we show in Appendix A.

The form �12� allows us to do the integral in our force
distribution �5� explicitly to find

P� f̃� � exp	−
A

2	
� �

�V0
fmax
erf���V0�

− erf„��V0�1 − f̃�…�� . �14�

The most probable breaking force fb is calculated from from
the equation

1 − 2
fb

�V0
=

�A

4�	
exp	− �V0�1 − 2

fb
�V0

�2� . �15�

III. RESULTS: FORCE RAMP

The rates dPb�f� /df=−dP�f� /df , or the breaking force
distributions, are shown in Fig. 2�a� for three potentials and
three values of 	̃=	 / ��AV0�=1, 10−5, 10−10 and v0

=V0 /kBT=20,40,60. The shapes of these curves are cer-
tainly in qualitative agreement with the experimental results,
including their slight asymmetry.

To get a quantitative understanding we plot in Fig. 2�b�
the most probable breaking force and the width of the force
distribution as a function of 	̃. From Eq. �15� we see that as

	̃→� the most probable breaking force f̃ b goes to 1. This
occurs either if the loading rate 	 is very large or if the
attempt frequency A is very low. But note that in this case
one does not obtain the experimentally observed breaking
force distributions.

A fit of our theory to the experimental results of the TP–
Ru–TP complex1 is shown in Fig. 3 with best parameters 	̃
=2�10−5 and v0=14. This implies that V0=0.35 eV and
�V0�0.5 eV/Å=0.7 nN. From 	̃ we obtain A=6�105 s−1.
Also shown in Fig. 3 are our predictions of multiple bond
breaking for the situations where the AFM tip has picked up
two and three complexes. Following the experimental paper1

we assume that by the time the first bond breaks the force is
so high that the other bonds break instantaneously. This im-
plies that in Eq. �14� we need to replace f by f /2 and f /3,
respectively, shifting the original peak from 103 pN to 185
and 255 pN. This procedure also widens the peaks asym-
metrically, in excellent agreement with experiment.

FIG. 2. �a� Breaking force distribution dP� f̃� /df̃ for three potential depths
�as shown by the colors� and for three force loading rates 	̃=	 / ��AV0�
=10−10,10−5 ,10−1 �left to right within each group�. Notice that the peak for
	̃=10−10 would be so low that all systems essentially dissociate at zero
force, see plot �b�. �b� Most probable breaking force and width of the force
distribution as a function of force load rate for three potential depths �all in
dimensionless form�.

FIG. 3. Theoretical predictions of the breaking force distribution for single,
double and triple strands �left to right� for TP–Ru–TP. Same parameters for
all curves.
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Next, we would like to make the connection with the
Ritchie–Evans version of Bell’s model5,13 employed in nu-
merous experimental papers for the data analysis, for which
the rate Eq. �1� reads

dP

dt
= − koff

* exp��f�xe�P , �16�

where �xe is interpreted as the maximum elongation of the
molecule in quasi-equilibrium before breaking. Note that �xe
is not a constant �as frequently assumed� but a function of f
�as it is in our theory�. We obtain this simplified model from
the present theory if we assume that the breaking force is
much smaller that the maximum, i.e., f��V0 /2, which is
generally applicable for small loading rates. In this case we
can expand the Arrhenius rate Eq. �4� using our harmonic
approximation �12� and obtain the rate expression �16� with
�xe=4/� and

koff
* = A exp�− �V0� . �17�

Recall that the prefactor in Equation �1� has a simple physi-
cal meaning: it is an attempt frequency weighted by entropic
factors as discussed in Sec. I. On the other hand, koff

* includes
a Boltzmann weight involving the potential depth V0. Thus it
is a hybrid that appears to defy physical interpretation if V0 is
not explicitly known.

The expressions for �xe and koff
* above enable direct com-

parison with the TP–Ru–TP data by Kudera et al.,1 where we
can use our values for A, V0 and � to get �xe=2 Å, and
koff

* =0.5 s−1, agreeing with their values of 3.3 Å and 0.05 s−1

to within an order of magnitude. The reason for these dis-
crepancies in the two parameters koff

* and �xe is the approxi-
mate nature of the Ritchie–Evans model: the data extend
over an interval fb±�f /2, and do not satisfy the condition
f��V0 /2 for the top 20% of this range.

In concluding this discussion we note that the Ritchie–
Evans model lacks an important physical parameter, namely
the strength of the bond. It thus appears to be limited to
forces with f��V0 /2, a restriction not imposed in our gen-
eral model. We will show in Sec. IV below, that it is advis-
able to use force loading rates as large as technically pos-
sible. This would hopefully enable observations close to the
maximally possible force fmax and should facilitate the ex-
traction of microscopic parameters.

IV. DATA ANALYSIS: FORCE RAMP

Our theory of bond breaking has three independent pa-
rameters A, V0 and � in terms of which the probability of
finding and intact bond �14� reads

P�f� � exp	−
A

4	
�V0��kBT

V0
�erf��V0/kBT�

− erf��V0/kBT�1 − 2
fb

�V0
���� . �18�

To extract these parameters from experimental data, one
has several options: �i� measure the force distribution for
several force loading rates 	 and fit them with the theoretical

curve; and �ii� to measure the breaking force distributions
when several strands are attached. A third option, namely to
determine the maximum and width of the breaking force
distribution for several force loading rates 	, is also possible
provided data with good statistics are available.

We have first checked option �i� and found that a unique
fit is obtained if we take three 	 that span two orders of
magnitude. Our experimental data were force distributions
calculated from Eq. �14�. The extracted fit parameters agree
with the original input data to arbitrary precision. The
uniqueness of the extracted parameters is quickly lost if the
force loading rates differ by less than two orders of magni-
tude. Similarly, option �ii�, i.e., measuring the force distribu-
tions for several attached strands �for 1, 2, and 3 attached
strands� also leads to a unique and perfect fit if two force
loading rates are used that differ by one order of magnitude.
Notice that we have used input data which were directly
derived from Eq. �5�, without considering any noise—this is
to highlight the difficulty in extracting physically meaningful
parameters.

To demonstrate the pitfalls of insufficient data, we have
analyzed the force distributions for one, two, and three
strands for a single force loading rate 	. As Fig. 4�a� shows,
we can easily produce a good fit; however, the parameters
extracted via least-square fitting can be different from the
input and strongly depend on the initial guesses in the fitting
procedure, i.e., the fit is not unique. This is shown in Fig.
4�a� where the input data �triangles� were calculated for

FIG. 4. Numerical fit to generated data �V0 /kB=4200 K; A=106 s−1; �
=1.4 Å−1� that utilized only the input data shown in �a�. The same “fit” can
be corrected only by taking into account data for a higher force loading rate,
as done in panel �b�.
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V0 /kB=4200 K, A=106 s−1, and �=1.4 Å−1. The fit shown
yielded, instead, V0 /kB=6200 K, A=109 s−1, and �
=1.5 Å−1. However, it is easy to demonstrate that this is
wrong by using the same fit parameters for the three curves
at a higher 	. Figure 4�b� shows that the latter fit is
unacceptable.

What we have concluded so far about the analysis of data
to extract the underlying physical parameters controlling
bond breakage was based on perfect theoretical breaking
force distributions. Noise in experimental data and limited
statistics complicate the fitting procedure significantly. Thus
one can only expect that the data analysis yields a unique set
of parameters if lots of data with good statistics are available,
in particular spanning a wide range of force loading rates.

A second, even more striking, example is the analysis of
unfolding of ubiquitin data, which was recently measured by
Schlierf, Li, and Fernandez.14 The Ritchie–Evans model
gives a perfect fit to their data, if the �physically question-
able� quantity �xe is used as a fitting parameter. We have
done the analysis for their data using the model outlined in
the previous section. As indicated above, the resulting fit is
not unique. In fact, Fig. 5 shows six different numerically
equivalent fits. We compare the obtained fit parameters in
Table I and calculate the corresponding values of koff

* -and
�xe in the Ritchie–Evans model as outlined above. The latter
are remarkably constant and match those obtained by Schli-
erf, Li, and Fernandez in the original Ref. 14. The last col-
umn in our table shows why the Ritchie–Evans model is
such a good approximation for this experiment—all data re-
main in the limit f� fmax. Apparently, the information pro-
vided by using a single force loading rate is insufficient to
determine the actual physical parameters of the system. We
point out that a simultaneous analysis, including the same
information for a different force-loading rate, should result in
unique values of the bond parameters.

The main numerical difficulties with fitting experimental
data with the theoretical breaking force distribution arise
from the fact that three parameters must be fitted simulta-
neously. This can be circumvented with an alternative fitting
procedure: �a� integrate the experimental breaking force dis-
tribution dPb�f� /df to obtain Pb�f�. �b� Plot

ln	 1

1 − Pb�f�
dPb�f�
df

� = ln A − ��V�f� �19�

as a function of f . At the lowest possible force this function
approaches �ln A−�V0� and as the force approaches its maxi-
mum it yields ln A. Next fit �ln A−�V0�1− f / fmax�2� �which
should be possible numerically in the small force regime�
and get fmax=�V0 /2 and thus �. This way one obtains first
estimates for the three parameters which can then be used for
the curve fitting described above.

V. DATA ANALYSIS: PULLING AT CONSTANT
CANTILEVER SPEED

Pulling at constant cantilever speed is the �experimen-
tally� simpler mode of breaking a molecular bond in that a
feedback loop to control the force loading rate is not re-
quired. However, it adds considerable difficulties in the in-
terpretation of the data. A detailed knowledge of the elastic
response of the polymer spacer itself is required. The rate Eq.
�1� now contains an additional integration over all accessible
forces

dPintact�t�
dt

= Pintact�t� �
 df�Pf�f�,t�A exp„− ���f��… .

�20�

Here, Pf is the probability of having a force f at time t. As
before, the formal solution to this simple differential equa-
tion is given by

Pintact�t� = exp	

0

t

dt�
 df�Pf�f�,t��A exp�− ���f���� .

�21�

For the force ramp mode we simply have Pf�f , t�=��f
−	t�. In general, the controlled position scenario has finite
force fluctuations.15,16 These become particularly important
when the polymer spacer is pulled very fast and equilibrium
theories become inapplicable. In such a scenario, one might
consider an approach as outlined elsewhere.17 Restricting
ourselves to slow pulling such that the spacer molecule is
always in equilibrium, we find15

TABLE I. Parameters V0, �, and A for the ubiquitin experiment, the corre-
sponding koff

* from the Ritchie–Evans model, and the maximum force fmax

=�V0 /2 for each Morse potential.

V0 �eV� � �Å−1� A �s−1� koff
* �s−1� �xe �Å� fmax �pN�

0.236 1.76 1.06�102 9.78�10−3 2.27 334
0.273 2.09 8.02�102 1.75�10−2 1.91 457
0.319 2.29 6.58�103 2.28�10−2 1.75 585
0.371 2.41 5.78�104 2.65�10−2 1.66 717
0.403 2.47 2.21�105 2.82�10−2 1.62 799
0.427 2.51 5.81�105 2.93�10−2 1.60 857

FIG. 5. Unfolding forces for ubiquitin, measured in Ref. 14 and fitted with
our theory. All parameters are given in Table I.
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Pf�f ,t� =
Z�vt − f/kc,N,T�exp„− �f2/�2kc�…


 df̄Z�vt − f̄/kc,N,T�exp„− � f̄2/�2kc�…
. �22�

Equation �22� requires the canonical partition function of the
polymer spacer Z�L ,N ,T�, the pulling velocity v and the
cantilever spring constant kc. Using stiff cantilevers in this
case has the advantage that one does not need to care about
the fluctuations in the polymer-spacer systems and one can
approximate Pf�f , t���(f − feqm�vt�), which we will use in
the following analysis. One then needs the force-extension
relation, feqm�Lp�, where Lp=vt is the time-dependent length
of the polymer spacer. This information is available from
experimental data or detailed theories of polymer
stretching.18–20 For a proof of principle, we use the simple
freely joined chain model with N monomers of length b
whose length L is given in terms of the force f by the Lange-
vin function

L�f� = Nb�coth��fb� − 1/��fb�� . �23�

Figure 6�a� shows the time dependence of the applied
force when the cantilever position is changed at constant
force-loading rate and contrasts it with that of a constant
velocity experiment. The nonlinearity will affect the break-
ing force distributions considerably as shown in Fig. 6�b�. An
additional difficulty arises from the fact that the exact mono-
mer length of the spacer is hard to control and in any given

experiment will have some distribution over which Eq. �22�
must be averaged. We show traces for N= 
100,150,200�
monomers to demonstrate the effect of finite distribution
monomer numbers.

There are claims that a Gaussian length distribution leads
to no noticeable change in the overall breaking spectra.11

However, we would like to point out that even a well char-
acterized and narrow length distribution will introduce addi-
tional uncertainties in the fitting procedure since it adds two
additional parameters, namely the average number of mono-
mers and the distribution width. As pointed out in the last
section, one needs very good data for a meaningful interpre-
tation of dynamic force spectroscopy. The finite distribution
width of different polymer spacers leads to a slight smearing
of the observed distributions, which results in extreme diffi-
culty in the fitting of data. This and other complications re-
lated to the use of constant velocity experiments would
be completely circumvented by using the force-clamp
technique.

VI. FORCE-CLAMP MODE

The force-clamp mode3 is similar to that with the constant
force-loading rate, but here the force is raised rapidly to
some value f and held constant. The Arrhenius rate Eq. �1�
then has a very simple solution that shows an exponential
decay with a constant decay rate

P�t� = exp�− rt� ,

r = A exp�− ��V�f�� . �24�

In this setup one would have to measure the bond decay time
�over several orders of magnitude� many times for each
force, which can be used to extract the decay rate r. If we
now plot the logarithm of the rate r vs the force f , we find a
spectrum such as given in Fig. 8 for four different tempera-
tures. The further analysis then proceeds as discussed around
Eq. �19�.

FIG. 6. �a� f�t� traces for a constant force loading rate 	=2 nN/s �black�
compared with constant velocity traces for v=118 nm/s with polymer spac-
ers of length N=100 �red�, 150 �turquoise�, and 200 �blue� monomers. These
correspond roughly to the spacers used in Ref. 1. �b� The calculated break-
ing spectra for the same traces as in �a� are done for the parameters A=4
�106 s−1, �=1 Å−1, and V0=0.52 eV.

FIG. 7. Most probable breaking force �solid lines� and the width of the
dP /df distribution are shown for the case of constant velocities and three
different potential depths with A=4�106 s−1 and �=1 Å−1.
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VII. SUMMARY

We have shown in this paper that a simple analytical
theory can be adapted for an analysis of bond breaking in the
atomic force microscope. Since the probabilities distribution
of bond breaking forces have rather simple shapes and not
much structure apart from some asymmetry, a large set of
data must be available to obtain the underlying physical pa-
rameters such as bond strength, bond width and Arrhenius
prefactor uniquely. Extracting the actual shape of the energy
surface requires much additional work. A large set of data
means data obtained under different experimental conditions
such as vastly different force loading rates. Figure 2 shows
that increasing the pulling rate will eventually lead to the
direct measurement of the maximum bond breaking force.
We emphasize that three independent parameters are neces-
sary for a complete microscopic explanation of this situation,
compared to two in models derived from Ritchie and Evans’
work.
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APPENDIX: CUTOFF HARMONIC BOND
POTENTIAL

In this appendix we show that the simplest of bond poten-
tials, namely a cutoff harmonic oscillator, confirms our con-

clusion that the Evans–Ritchie model is only valid for forces
small compared to the maximum forces allowed for a given
bond potential.

We assume that the unperturbed bond potential is given
by a harmonic potential as V�x�=−V0+k�x−xmin�2 /2 so that
in the presence of an external force we have

V�x� = − V0 +
1

2
k�x − xmin�2
��2V0/k − x� − fx .

For purposes of comparison, we choose the force constant to
be the same as that for small oscillations in a Morse poten-
tial, i.e., k=2V0�

2. Following the procedure outlined in Sec.
II we calculate the force-dependent activation energy as

�V = Vmax − Vmin = V0 −
�2V0

k
+

1

2k
f2

= V0 −
f

�
�1 −

f

2fmax
� , �A1�

where the maximum sustainable force �for which �V=0� is
fmax=2V0�. Again we find that koff

* =A exp�−�V0�. Dropping
the quadratic term for forces f� fmax we again obtain the
Evans–Ritchie model with an activation energy linear in the
force and, not surprisingly, no dependence on the depth of
the potential. We finally observe that the barrier �A1� in this
calculation has the form �V /V0= �1− f / fmax�2, which is ex-
actly the approximation made in Eq. �12�.

1M. Kudera, C. Eschbaumer, H. E. Gaub, and U. S. Schubert, Adv. Funct.
Mater. 13, 615 �2003�.

2M. K. Beyer, J. Chem. Phys. 112, 7307 �2000�.
3A. F. Oberhauser, P. K. Hansma, M. Carrion-Vasquez, and J. M.
Fernandez, Proc. Natl. Acad. Sci. U.S.A. 98, 468 �2001�.

4H. Grubmüller, B. Heymann, and P. Tavan, Science 271, 997 �1997�.
5E. Evans and K. Ritchie, Biophys. J. 72, 1541 �1997�.
6H.-Y. Chen and Y.-P. Chu, Phys. Rev. E 71, 010901�R� �2005�.
7P. M. Williams, Anal. Chim. Acta 479, 107 �2003�.
8B. Heymann and H. Grubmüller, Phys. Rev. Lett. 84, 6126 �2000�.
9H. J. Kreuzer, Chin. J. Phys. �Taipei� 43, 249 �2005�.

10M. Evstigneev and P. Reimann, Phys. Rev. E 68, 045103 �2003�.
11C. Friedsam, A. K. Wehle, F. Kühner, and H. E. Gaub, J. Phys.: Condens.

Matter 15, S1709 �2003�.
12P. E. Marszalek, H. Li, A. F. Oberhauser, and J. M. Fernandez, Proc. Natl.

Acad. Sci. U.S.A. 99, 4278 �2002�.
13G. I. Bell, Science 200, 618 �1978�.
14M. Schlierf, H. Li, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A.

101, 7299 �2004�.
15H. J. Kreuzer and S. H. Payne, Phys. Rev. E 63, 021906 �2001�.
16H. J. Kreuzer, S. H. Payne, and L. Livadaru, Biophys. J. 80, 2505 �2001�.
17F. Hanke and H. J. Kreuzer, Phys. Rev. E 72, 031805 �2005�.
18F. Oesterhelt, M. Rief, and H. E. Gaub, New J. Phys. 1, 6.1 �1999�.
19H. J. Kreuzer and M. Grunze, Europhys. Lett. 55, 640 �2001�.
20L. Livadaru and H. J. Kreuzer, Phys. Chem. Chem. Phys. 6, 3872 �2004�.

FIG. 8. Force clamp spectra for different temperatures, the parameters are
A=106 s−1, V0=0.35 eV, and �=1.4 Å−1. These plots were generated using
the barrier �V�f� for a Morse potential as given in Eq. �11�.
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