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The controlled insertion of artificial nanostructures into biological cells has been utilized for patch
clamping, targeted drug delivery, cell lysing, and cell mechanics measurements. In this work, an
elastic continuum model is implemented to treat the deformation of spherical cells in solution due
to their interaction with cylindrical probes. At small deformations, the force varies nonlinearly with
indentation due to global deformation of the cell shape. However, at large indentations, the force
varies linearly with indentation due to more localized deformations. These trends are consistent with
experimental measurements under comparable conditions and can be used to develop design rules
for optimizing probe-cell interactions. © 2010 American Vacuum Society.
�DOI: 10.1116/1.3431960�

I. INTRODUCTION

Engineering the mechanical interactions between artificial
nanostructures and cell membranes represents a powerful ap-
proach for understanding and regulating biological systems.
For example, sharpened structures such as glass pipettes or
AFM tips have been used to characterize mechanical prop-
erties of biological cells.1–3 The insertion of inorganic nano-
wires or carbon nanotubes through these membranes can also
allow electrical and biochemical access into the cell
interior.4–9 The cellular uptake of micro- and nanoparticles
through alternate pathways such as endocytosis or
phagocytosis10 have been explored for targeted drug delivery
or gene therapy.11–15 Finally, the use of topographical pat-
terning at the nanoscale can have dramatic effects on cellular
phenotype and organization.16,17

These interactions are dependent on the viscoelastic prop-
erties of cellular membranes, which have been characterized
through a variety of techniques, including micropipette aspi-
ration, atomic force microscopy, microchannel flow, and op-
tical tweezers.18 Quantitative measurements of membrane
tension and compression modulus have been utilized in both
continuum and finite-element models of cell mechanics.
Most of the models for cellular deformation are continuum
models based on micropipette aspiration, which model the
process either as the deformation of a viscoelastic solid cell
body �solid models�19,20 or as the flow of a fluid inside a
membrane �fluid models�.21–23 Although these models have
been very successful in elucidating the pipette-cell system,
their broader applicability is limited due to the use of param-
eters and boundary conditions highly specific to these experi-
mental scenarios, as well as their mathematical complexity.
The other class of cellular deformation models is that of
phenomenological models such as the sol-gel model, soft
glassy rheology, or tensegrity.24 These models seek to ex-
plain the unusual rheological properties of biological cells

and how they might arise from the molecular interactions of
cytoskeletal polymers and motor proteins. However, they
have not yet been applied to detailed cell shape calculations,
particularly for free cells.

Here, we present an elastic continuum model that treats
the large-scale deformation of an unattached spherical cell
interacting with a cylindrical probe �Fig. 1�. This geometry is
relevant for lab-on-a-chip platforms that use microfabricated
pillars or nanoscale electrodes on flat surfaces, as well as
transfection of nonadherent cells using microinjection. Since
the focus of this work is on the large-scale deformation of
membranes, it does not account for any local stress concen-
tration that might arise due to interaction with very sharp
probes. However, an increased understanding of the interac-
tions between cell membranes and probe surfaces is essential
for the development of membrane-fusing “stealth” nano-
structures with heterogeneously functionalized sidewalls.25

The cell is treated as a nonadherent elastic body which
deforms on contact with the cylindrical probe. This is a cru-
cial distinction from the scenario considered by Sen et al.,26

where the cell is strongly fixed on a substrate and contacted
by an external probe from solution, modeled by holding the
cell footprint constant. The different boundary conditions im-
posed here drive a dramatically different evolution of cell
shape profile with probe indentation. Initially, the cell exhib-
its global shape deformation at small indentations but transi-
tions to a more localized deformation at larger indentations.
This trend corresponds to a nonlinear to linear scaling of
indentation force with indentation distance that has been pre-
viously observed experimentally in an analogous system of
polymeric vesicles.27 These effects have a strong dependence
on probe diameter, which suggests design rules for optimiz-
ing the interactions between biological cells in solution and
nanofabricated structures on a surface for lab-on-a-chip ap-
plications. Moreover, this model may yield novel insights
into the mechanical behavior of cells that are not strongly
adherent to a surface.a�Electronic mail: nmelosh@stanford.edu
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II. THEORY

The scenario of a nonadherent cell in solution interacting
with a cylindrical probe �Fig. 1�a�� is treated through the
following theoretical framework. The cell is assumed to be
initially spherical with a radius Rc=4 �m, which is compa-
rable to the size of a red blood cell. It is axisymmetrically
indented by a cylindrical probe whose diameter is varied
from 1 �m down to 10 nm, to treat a range of possible probe
types from microelectrodes down to inorganic nanowires.
Under these conditions, gravitational forces are relatively
weak �approximately piconewtons�. Instead, the probe-cell
interactions may arise from externally applied forces such as
micropipette manipulation or fluid flow. The cell is assumed
to be incompressible, so that its volume is conserved at the
cost of increasing surface area with deformation. This ener-
getic cost of area expansion arises from the cell membrane,
which consists of various proteins and carbohydrates embed-
ded in a fluid lipid bilayer. The cell membrane is approxi-
mated by an average isotropic elastic sheet with a character-
istic bending rigidity and area expansion modulus. Since the
membrane is very thin, the effect of bending energy on mem-
brane tension is neglected.28 The shear deformation energy is
also assumed to be negligible compared to the dilational en-
ergy contribution.29 Under these conditions, the membrane
tension can be assumed to be uniform throughout the surface
of the membrane.30 The deformation of the membrane due to
the force applied by a cylindrical probe is given �to leading
order� by the Young–Laplace equation:31

1

Rm
+

1

R�

=
�P

T
= const, �1�

where T is the isotropic tension in the membrane, �P is the
hydrostatic pressure, and Rm and R� are the principal curva-
tures of the membrane. Experimentally, the deformed con-
tour of preswollen red blood cells has been shown to follow
this condition, wherein the mean curvature is constant at ev-
ery point on the membrane.32

By incorporating a gradually varying boundary condition
at the probe surface and utilizing the Young–Laplace equa-
tion under the constraint of constant volume, the cell shape
profile can be successively calculated at varying probe inser-
tions �indentations� to a depth h. In particular, as the cell is
deformed due to indentation by the probe, the contact angle

at point B �Fig. 1�c�� is assumed to vary smoothly from 0° to
90°. Once the contact angle at point B reaches 90°, the mem-
brane begins to conform with the sidewalls of the probe. In
this regime, the contact angle of the membrane with the
probe stays constant at 90°; however, it keeps deforming to
maintain a fixed volume at increasing indentations.

As the cell deforms and its surface area increases with
indentation, the membrane tension is assumed to increase
linearly with the fractional increase in area.33–35 The inden-
tation force F of the probe can be determined from a force
balance with terms corresponding to hydrostatic pressure and
membrane tension, as shown in Fig. 1�c�:

F = �P��R2
2� − �T0 + Ka��2�R2, �2�

where R2 is the equatorial radius of the cell that varies with
membrane deformation, T0 is the membrane tension at zero
deformation, Ka is the elastic expansion modulus for area
deformation, and � is the fractional area expansion. In this
scheme, the primary contribution to membrane deformation
is assumed to arise from this mechanism. Although this is
appropriate for the probe diameters considered here, probes
with sharp geometries generate local stresses that may nucle-
ate membrane rupture. This scenario will be considered
elsewhere.

This theoretical framework of a mobile, unattached
spherical cell interacting with a cylindrical probe structure
�Fig. 1�a�� is analogous to the case of axisymmetric loading
of a thin spherical shell using the equations of membrane
elasticity. This scenario is particularly difficult to treat ana-
lytically due to the nonlinearities inherent in this geometric
configuration.36 Instead, the numerical solution implemented
here offers a convenient and accurate solution where the con-
vergence of the analytical solution is slow.

III. RESULTS AND DISCUSSION

Figure 2 shows the evolution of the cell shape profile at
successive indentation for the representative cases of 1 �m
and 100 nm diameter probes. In both cases, the assumption
of volume conservation causes the cell to both flatten verti-
cally and swell laterally with increasing indentation. The ex-
tent of this swelling depends strongly on the probe diameter
dP since the cell is more strongly distorted by the displaced
volume of larger probes. For example, for a large probe with
dP=1 �m, the cell swells laterally by approximately 150 nm
over the course of the 1.3 �m indentation in profiles A–C.
In comparison, for a much smaller probe with dP=100 nm,
the cell swells laterally by only 15 nm for the same indenta-
tion in profiles U–Y.

A closer examination of successive cell shape profiles
near the probe �Figs. 2�b� and 2�d�� reveals a surprising
trend. Initially, for small indentations, the cell shape under-
goes a global shape deformation �A→C or U→W�. How-
ever, beyond a critical indentation h�, the cell shape defor-
mation becomes much more localized to the proximity of the
probe �C→E or W→Z�. These deformations can be quanti-
fied by comparing successive cell shape profiles, correcting
for the vertical displacement of the cell through an offset

FIG. 1. �a� �Color online� Nonadherent cell in solution in contact with a
probe fabricated on a substrate. �b� Schematic showing the snapshot of the
original cell and the deformed cell, offset to keep the center of the cell fixed.
�c� Free body diagram of the half cell. F, �P, and T represent the indenta-
tion force, the pressure difference, and the membrane tension, respectively.
Note how the cell flattens and expands laterally to conserve the total
volume.
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proportional to the indentation so that the center of the cell
does not change �Fig. 3�. The difference in successive cell
shape profiles �y is shown in Fig. 4 for the representative
cases of dP=1 �m and dP=100 nm. For the former case,
during the transition from A→B as well as B→C, �y is
nonzero for all values of x, which represents global changes
in cell shape for small indentation �Fig. 4�a��. �y changes
sign at intermediate values of x, which corresponds to the
intersection of the cell shape profiles and is an artifact due to
the applied offset �Fig. 3�. In the limit of large indentations
like for C→D or D→E, �y is zero everywhere but near the
immediate vicinity of the probe �Fig. 4�c��. Thus, the shape
change in this regime is highly localized near the probe with
minimal global distortion. The case for indentation by a
probe with dP=100 nm shows similar trends in deformation
as the shape change transitions from being global at small
indentations �Fig. 4�b�� to being localized around the probe
for large indentation �Fig. 4�d��.

A useful metric for quantifying this deformation can be
defined in terms of the lateral position of the minimum point
on the cell shape profile �Fig. 5�. For small indentations, the
global deformation of the cell is exhibited by a large lateral
shift in xmin of �0.6 �m from A→B and �0.2 �m from
U→X, for dP=1 �m and 100 nm, respectively �Fig. 5�c��.
At larger indentations, the cell membrane becomes nearly
conformal with the probe surface, resulting in more localized
deformation that leaves the global cell shape profile largely
unchanged. Thus, there is negligible change of 10–15 nm in
xmin in the limit of large deformations from C→D and X
→Y, for dP=1 �m and 100 nm, respectively. These curves
can be rescaled to comparable values by nondimensionaliz-

ing the indentation by the geometric mean of probe radius
and cell radius, i.e., h�=2h /�rPRC and xmin by cell radius,
xmin

�=xmin /RC �Fig. 5�d��.
Since volume is conserved, the large lateral deformations

observed for small indentations correspond to small vertical
deformations. Conversely, the small lateral deformations ob-
served at large indentations correspond to larger vertical de-
formations. This is quantified through the vertical position of
the minimum point ymin on the cell shape profile �Figs. 5�e�
and 5�f��. For small indentations �A→B or U→X�, there are
vertical shifts of ymin=0.1 and 0.3 �m, respectively, for
1 �m and 100 nm diameter probes. In the limit of larger
indentations �B→C or X→Y�, there are larger vertical shifts
of ymin=0.4 �m and 0.8 �m, respectively, for 1 �m and
100 nm diameter probes. The overall variation in ymin as a
function of indentation h is shown in Fig. 5�e�. As the probe
diameter increases from 10 nm to 1 �m, the transition from
global deformation to local deformation occurs at larger and

FIG. 3. �Color online� �a� Schematic of two snapshots of the deformed cell
profiles at successive indentation. �b� Shape profile B offset to keep the
center of the cell fixed. Variation in �y along x shows where the shape
change occurs.

FIG. 2. �Color online� Successive shape profiles of the cell with increasing deformation as it is indented by the probe. The probe is assumed to be 2 �m in
height. �a� Deformation against a thick probe 1 �m in diameter. A–E refer to intermediate deformation profiles of the cell. �b� Deformation profiles close to
the 1 �m diameter probe. �c� Deformation against a thin probe 100 nm in diameter. U–Z refer to intermediate deformation profiles of the cell. �d� Deformation
profiles close to the 100 nm diameter probe. The thin 100 nm probe is in much more conformal contact with the cell membrane as compared to the thick 1 �m
probe.
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larger critical indentations h�. Beyond this critical indenta-
tion, the lateral minimum position xmin approaches a plateau
value, whereas the vertical minimum position ymin increases
rapidly.

The critical transition from global deformation regime
and local deformation regime can be more easily compared
by rescaling the indentation with the geometric mean of
probe diameter and cell radius, i.e., h�=2h /�rPRC. The hori-
zontal and vertical coordinates of the minimum of the cell
shape profile are similarly rescaled by the cell radius, i.e.,
xmin

�=xmin /RC and ymin
�=ymin /RC. After this rescaling, the

critical transition now occurs when the indentation is order
unity, h��1, for all probe diameters �Figs. 5�d� and 5�f��.
This critical value delineates a transition between a highly
nonlinear regime at small indentations and a linear regime at
larger indentations. Intriguingly, a comparable transition oc-
curs when comparing the indentation force Findent and inden-
tation displacement h for all probe diameters �Fig. 6�. As the
probe diameter increases from 10 nm to 1 �m, the necessary
force F to reach a given indentation h increases since the cell
must undergo more distortion to conform to the probe. These
can be compared in a similar manner by rescaling force with
the product of maximum membrane tension and probe ra-
dius. Such a transition has been observed experimentally in a
comparable but nonbiological system when polymeric
vesicles freely suspended in solution were indented with flat
tipped microcantilevers.27 For the case of indentation of

FIG. 4. �Color online� Differences in subsequent cell deformation profiles
�y near the probe surface. The deformation profiles selected are the same as
the ones marked in Fig. 2. �a� Small indentations with dp=1 �m. A→B
corresponds to the subtraction of cell profile B �adjusted for height� from
cell profile A, etc. Large �y at all values of x indicates a global change in
the shape of the cell. �b� Small indentations with dp=100 nm show global
deformations in cell shape that are similar to �a�. �c� Large indentations with
dp=1 �m. A large �y only at x close to the probe surface and zero every-
where else indicates a local change in the shape of the cell. �d� Large
indentations with dp=100 nm show local deformations in cell shape that are
similar to �c�.

FIG. 5. �Color online� Cell shape profiles near the probe, �a� for a probe
1 �m in diameter, and �b� for a probe 100 nm in diameter. Letters A, B,
C,…,U, V, W,… are the cell shape profiles at specific indentations, same as
in Fig. 2. The point on the cell membrane closest to the substrate is indicated
on all profiles by a gray circle; it has coordinates �xmin,ymin�. �c� Variation of
xmin with indentation for different probe sizes. xmin plateaus at the nonlinear
to linear transition. �d� xmin normalized with cell radius, plotted against
dimensionless indentation, h�=2h /�rP�RC. The dimensionless indentation
at transition, marked by the onset of the plateau region, collapses to order
unity for different probe sizes. �e� Variation of ymin with indentation for
different probe sizes. Note the nonlinear to linear transition. �f� Variation of
ymin normalized by the cell radius with dimensionless indentation, h�. Simi-
lar to �d�, the indentation at transition collapses to order unity.

FIG. 6. �Color online� Effect of probe diameter on the vertical force exerted
by the cell on the probe as a function of indentation. The force is nondimen-
sionalized with the product of maximum membrane tension and probe ra-
dius. �a� Force-indentation curves on a linear scale; note the nonlinear to
linear transition similar to Figs. 5�e� and 5�f�. �b� Force-indentation curves
on a log-log scale. The nonlinear region has a slope of about 2.5. The
nonlinear to linear transition occurs at a nondimensional indentation of order
unity.
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these polymeric vesicles by sharp cantilevers, only the linear
regime was observed experimentally as the measured inden-
tations are much larger compared to the critical indentation.
However, this transition is the exact opposite of what was
observed �a linear to nonlinear transition� by Sen et al. for
cells that are strongly adherent to a substrate. These dramati-
cally different trends arise from the different boundary con-
ditions implemented in the respective models.

The nonlinear to linear transition becomes more apparent
when the data are replotted on a log-log scale �Fig. 6�b��.
Over the 2 decades in probe diameter considered here, the
force in the nonlinear small-indentation regime consistently
scales as a power law in displacement with an exponent of
2.5�0.1. However, in the linear large-indentation regime,
the force is linear in displacement with an exponent of
1�0.2.

F � �h��2.5 for small indentations,

F � �h��1.0 for large indentations.

Given the nonlinearity inherent in this geometry, the physical
origin of this particular scaling dependence remains
unclear.36 The scaling exponent of 2.5 observed in the non-
linear regime is close to the exponent of 2.66 found by Hate-
gan et al. for the deformation of a spherical membrane by an
attached spherical bead.37,38

In order to elucidate the origin of this transition from
global to local deformation, the cell shape deformation near
the surface is examined through two metrics. First, the prox-
imity of the membrane to a fixed location on the probe sur-
face is considered �Fig. 7�. The minimum distance between
this location and the cell membrane continually decreases
with increasing indentation as the cell deforms around the
probe. One possibility is that the global to local transition
occurs when the cell comes into conformal contact with the
probe at sufficiently large indentations, hC. However, the
critical indentation h� appears to occur well before confor-
mal contact. For example, at the transition points C and W
for the dp=1 �m and 100 nm, respectively, the membrane is
still found to be at a minimum distance of 15 and 20 nm,
respectively, from the fixed location on the probe. Conformal
contact does not occur until well into the nonlinear regime,

i.e., beyond points X and D, respectively. Moreover, the in-
dentation at which the cell conformally contacts the probe at
this point increases from about hC=1 �m for dP=100 nm to
hC=2 �m for dP=1 �m, due to the difficulty of deforming
around large probes. This trend is corroborated by the use of
a second metric, the contact angle of the membrane with the
top of the probe �Fig. 8�. The contact angle at the critical
transition h�, which corresponds to point C for the 1 �m
probe case, is found to be about 75°. In contrast, the cell
membrane conformally contacts the probe surface for contact
angles of 90° or greater. Similarly, for the 100 nm diameter
probe, the contact angle at the critical indentation h� occurs
at point W, which corresponds to a contact angle of slightly
over 60°.

It should be noted that cells can be lysed at sufficiently
large indentations due to excessively large area strains. This
is an important consideration when optimizing nanostructure
geometries for lab-on-a-chip applications. For example, pro-
moting cell lysis may be preferable for extracting cell con-
tents for subsequent molecular analysis.39 However, applica-
tions such as patch clamping or drug delivery would be more
effective if good conformal contact can be achieved without
lysing. The maximum safe area strain corresponding to the
onset of lysing can be estimated by �=3�0.7% based on
experimental measurements on red blood cells by Evans
et al.40 This can be compared to the increase in membrane
surface area and effective tension computed from the change
in cell shape profiles at increasing indentations �Fig. 9�. As
probe diameter increases, this maximum allowable indenta-
tion decreases since the cell undergoes much larger deforma-
tion to accommodate the increased probe volume. For in-
stance, with probes of dp=1 �m or 500 nm, this unsafe area
strain corresponds to maximum allowable indentations of 1.3
and 2.2 �m, respectively. This is comparable to experimen-
tal observations for transfection using microinjectors, where
1 �m insertion is sufficient to introduce genetic material
inside the cell. However, for smaller probes of 100 or 10 nm
in diameter,41,42 lysing will not occur due to area strain
mechanisms even for very large indentations. Instead, at
these molecular length scales, lysing may occur due to other

FIG. 7. �Color online� �a� Proximity of the cell membrane to a fixed location
on the probe as the cell is indented by probes with different diameters,
measured as the shortest distance r between this location and cell mem-
brane. The fixed location is arbitrarily defined to be 100 nm away from the
top of the probe. r increases with increasing probe diameter due to the
difficulty of deforming around large probes. �b� Schematic showing how this
distance r changes with indentation.

FIG. 8. �Color online� Change in the contact angle, 	, of the cell membrane
at the probe tip with indentation, shown here for different probe diameters.
The contact angle at the probe is less than 90° at the transition point �C or
W�, indicating that the transition does not correspond to conformal contact
with the probe.
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physical mechanisms such as pore nucleation and growth
due to local stress hotspots. These mechanisms have not been
addressed here but will be explored in future work.

One assumption of this model is that the membrane ten-
sion increases linearly with fractional change in area. Al-
though this assumption is appropriate for swollen blood
cells, it may not hold for other types of eukaryotic cells,
which possess different membrane structures and viscoelastic
properties. These could include large membrane reserves
�i.e., membrane folds or protrusions� or nonlinear elasticities.
Nevertheless, this scheme can be easily adapted to address
those considerations by varying the dependence of tension
with area dilation.

Another important assumption is that mechanical defor-
mation occurs under equilibrium conditions. This holds for
red blood cells, but most eukaryotic cells exhibit coordi-
nated, nonequilibrium structural rearrangements. These ac-
tive mechanisms may play a role in recent experiments
where cells impale themselves on arrays of nanowires.9 In
these experiments, the cell-substrate adhesions could gener-
ate additional downward forces for indentation, but this has
not been established. Even so, the theoretical model devel-
oped here is expected to be relevant for two general sce-
narios. First, equilibrium deformation should be appropriate
for fast timescales where the cell does not have sufficient
time to respond. Second, this model is likely to be the lim-
iting case for larger probes where the volume becomes com-
parable to the cell size, since it is extremely difficult for
large-scale nonequilibrium rearrangements to occur.

IV. CONCLUSIONS

The deformation of spherical cells in solution due to the
axisymmetric indentation by a cylindrical probe is treated
using an elastic continuum model. Consistent with previous
experimental measurements in this geometry, the indentation
force exhibits a nonlinear to linear transition with increasing
indentation. This can be explained phenomenologically in
terms of a global cell deformation regime at small indenta-
tions which transitions to more localized deformations at

larger indentations. As probe diameter increases, this critical
transition occurs at larger indentations, since the cell under-
goes larger deformations to accommodate the volume of
larger probes. However, it appears that this critical transition
is not due to the onset of conformal contact between the
probe surface and cell membrane.

This model reveals certain nontrivial trends in cell defor-
mation and membrane tension due to probe-cell interactions
that are relevant for lab-on-a-chip design, cell transfection,
and mechanobiology. First, it can be used to estimate the
minimum indentation distance necessary to achieve confor-
mal contact of the cell membrane with the probe, allowing
biochemical or electrical access to the cell interior. In addi-
tion, it can be used to estimate the maximum indentation
distance where cells do not get lysed due to excessive area
strain. Finally, the transition from nonlinear to linear regimes
in indentation represents a limiting case for cells that are not
adherent to a surface. This may yield qualitative insight for
experimental scenarios where cells are only weakly adherent,
including surfaces that are topographically patterned on the
micro- or nanoscale.

ACKNOWLEDGMENTS

The authors thank T.-f. Wong for helpful discussions. P.V.
was funded by the Stanford Center for Integrated Systems.
I.Y.W. was funded by the NSF Grant No. CBET-0827822.

APPENDIX
Figure 10 shows the notation used in the following analy-

sis. If T is the isotropic tension in the membrane, �P is the
hydrostatic pressure, and Rm and R� are the principal curva-
tures of the membrane, applying a force balance on a patch
of membrane, as shown in Fig. 10�a�, gives

1

Rm
+

1

R�

=
�P

T
= const. �A1�

Using the Frenet–Serret relation, this equation becomes

FIG. 9. �Color online� Percentage change in area of the cell membrane with
indentation for different probe sizes. The region marked cell lysis is where
the membrane area strain is greater than 3%.

FIG. 10. �a� Geometry and notation used to calculate the cell shape. The
probe, which has a radius R1, is shown in gray. The boundary conditions for
the shape are specified in terms of the contact angles 	A and 	B at distances
R2 and R1 from the y-axis, respectively �b� Free body diagram of a mem-
brane patch showing the direction of membrane tension. The meridional and
circumferential radii of curvature are also shown.
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du

dx
+
u

x
= const where u = sin 	 , �A2�

with boundary conditions—x=R1, 	=−	B and x=R2, 	=	A
=90°. Angle 	A is fixed at 90° so that when the curve if
reflected about the x-axis, it remains smooth. Thus, the shape
of the entire cell can be computed by solving for the cell
shape in just one quadrant.

The solution to the differential equation �A2� can be de-
termined by multiplying it with an integrating factor e��1/x�dx.
The solution is

u = c1x +
c2

x
, �A3�

where

c1 =
R1 sin 	B + R2

R2
2 − R1

2 and c2 =
R1R2�R1 + R2 sin 	B�

R1
2 − R2

2 .

As the cell is deformed due to indentation by the probe, the
contact angle at point B is assumed to vary smoothly from 0°
to 90°. Once the contact angle at point B reaches 90°, the
membrane begins to conform with the sidewalls of the probe.
In this regime, the contact angle of the membrane with the
probe stays constant at 
90°; however, it keeps deforming to
maintain a fixed volume at increasing indentations. For the
nonconformal regime, the volume of quarter cell can be
computed as the volume of the surface of revolution,

V = 	
R2

R1

�x2

c1x +
c2

x

�1 − 
c1x +
c2

x
�2
dx . �A4�

For the regime where the membrane is in contact with the
sidewalls of the probe, a volume equal to that of the cylinder
swept by the probe was added to this computed volume. To
solve the differential equation �A2� subject to the condition
of constant volume, the following iterative scheme was used.
The lateral swelling of the cell or the increase in R2, �R2

arbitrarily assigned an initial value. Using the solution �A3�
to the differential equation, the volume of the cell was com-
puted using expression �A4�. A correction was applied to
�R2 in proportion to the difference between the initial vol-
ume of the spherical cell V0 and the computed volume. This
was done iteratively until the computed volume was equal to
the initial volume V0. From 	 as a function of x, the y coor-
dinate of the curve was determined using the following rela-
tion:

y = 	
R2

x

tan 	dx = 	
R2

x c1x +
c2

x

�1 − 
c1x +
c2

x
�2
dx . �A5�

This calculation was repeated for different values of contact
angle at point B in the range 0° to 90° to compute the entire
shape evolution of the cell. From cell shape, indentation was
computed as

h = R0 − 	
R2

R1
c1x +

c2

x

�1 − 
c1x +
c2

x
�2
dx , �A6�

where R0 is the radius of the undeformed spherical cell.
To calculate the membrane tension, the pressure differ-

ence, and the indentation force on the cell, consider the free
body diagram of a cell sectioned at the midplane, as shown
in Fig. 1�c�. If f is the force exerted by the indentation probe,

T�2�R2� + f = �P��R2
2� . �A7�

The tension goes up linearly with the fractional area expan-
sion, �, as31

T = T0 + Ka� . �A8�

For the purpose of these calculations, an area expansion
modulus of Ka=450 mN /m2 and zero initial tension corre-
sponding to a free nonadherent cell are assumed.40 To calcu-
late this fractional area expansion, �, at any instant, the area
expansion was computed using the initial area A0 of the half
cell as

� =
A − A0

A0
where A = 	

R1

R2 2�x

�1 − 
c1x +
c2

x
�2
dx .

�A9�

Thus, the indentation force can be calculated with deforma-
tion as

f = �P��R2
2� − �T0 + Ka��2�R2. �A10�

From Eq. �1�, we know that

�P =
1

Rm
+

1

R�

= 2c1T⇒ f = 2c1T��R2
2� − T�2�R2� ⇒ f

= �T0 + Ka��2�R2�c1R2 − 1� . �A11�

1N. Hilal, W. Bowen, L. Alkhatib, and O. Ogunbiyi, Chem. Eng. Res. Des.
84, 282 �2006�.

2F. Gaboriaud and Y. F. Dufrene, Colloids Surf., B 54, 10 �2007�.
3Y. F. Dufrêne, Nat. Rev. Microbiol. 6, 674 �2008�.
4P. Sun, F. O. Laforge, T. P. Abeyweera, S. A. Rotenberg, J. Carpino, and
M. V. Mirkin, Proc. Natl. Acad. Sci. U.S.A. 105, 443 �2008�.

5I. Kleps, M. Miu, F. Craciunoiu, and M. Simion, Proceedings of the 32nd
International Conference on Micro- and Nano-Engineering �Microelec-
tron. Eng. 84, 1744 �2007��.

6W. Kim, J. K. Ng, M. E. Kunitake, B. R. Conklin, and P. Yang, J. Am.
Chem. Soc. 129, 7228 �2007�.

7Y. Qiao, J. Chen, X. Guo, D. Cantrell, R. Ruoff, and J. Troy, Nanotech-
nology 16, 1598 �2005�.

8X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, Proc. Natl. Acad. Sci.
U.S.A. 104, 8218 �2007�.

9A. K. Shalek et al., Proc. Natl. Acad. Sci. U.S.A. 107, 1870 �2010�.
10S. D. Conner and S. L. Schmid, Nature �London� 422, 37 �2003�.
11M. E. Davis, Z. G. Chen, and D. M. Shin, Nat. Rev. Drug Discovery 7,

771 �2008�.
12W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, Nat. Nanotech-

nol. 3, 145 �2008�.
13B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, Nano Lett. 6, 662

�2006�.

43 Verma, Wong, and Melosh: Continuum model of mechanical interactions between biological cells 43

Biointerphases, Vol. 5, No. 2, June 2010



14J. A. Champion and S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 103,
4930 �2006�.

15S. Mitragotri and J. Lahann, Nature Mater. 8, 15 �2009�.
16R. G. Thakar, M. G. Chown, A. Patel, L. Peng, S. Kumar, and T. A.

Desai, Small 4, 1416 �2008�.
17M. M. Stevens and J. H. George, Science 310, 1135 �2005�.
18T. Brown, J. Biomech. 33, 3 �2000�.
19G. W. Schmidschonbein, K. L. Sung, H. Tozeren, R. Skalak, and S.

Chien, Biophys. J. 36, 243 �1981�.
20D. P. Theret, M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler,

J. Biomech. Eng. 110, 190 �1988�.
21E. Evans and A. Yeung, Biophys. J. 56, 151 �1989�.
22D. Needham and R. M. Hochmuth, J. Biomech. Eng. 112, 269 �1990�.
23C. Dong, R. Skalak, and K. L. Sung, Biorheology 28, 557 �1991�.
24B. D. Hoffman and J. C. Crocker, Annu. Rev. Biomed. Eng. 11, 259

�2009�.
25B. D. Almquist and N. A. Melosh, Proc. Natl. Acad. Sci. U.S.A. 107,

5815 �2010�.
26S. Sen, S. Subramanian, and D. E. Discher, Biophys. J. 89, 3203 �2005�.
27V. Gordon, C. Xi, J. Hutchinson, A. Bausch, M. Marquez, and D. Weitz,

J. Am. Chem. Soc. 126, 14117 �2004�.
28B. Daily, E. L. Elson, and G. I. Zahalak, Biophys. J. 45, 671 �1984�.

29E. A. Evans and R. Skalak, CRC Crit. Rev. Bioeng. 3, 181 �1979�.
30R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics

�Prentice-Hall, Englewood Cliffs, NJ, 1962�.
31D. H. Boal, Mechanics of the Cell �Cambridge University Press, Cam-

bridge, UK, 2002�.
32E. A. Evans, Biophys. J. 30, 265 �1980�.
33E. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094 �1990�.
34B. M. Discher, Y. Y. Won, D. S. Ege, J. C. Lee, F. S. Bates, D. E. Discher,

and D. A. Hammer, Science 284, 1143 �1999�.
35Y. Zhou and R. M. Raphael, Biophys. J. 89, 1789 �2005�.
36S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells,

Engineering Societies Monographs, 2nd ed. �McGraw-Hill, New York,
1959�.

37A. Hategan, R. Law, S. Kahn, and D. E. Discher, Biophys. J. 85, 2746
�2003�.

38E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Biomem-
branes �CRC, Boca Raton, FL, 1980�.

39D. Di Carlo, K.-H. Jeong, and L. P. Lee, Lab Chip 3, 287 �2003�.
40E. A. Evans, R. Waugh, and L. Melnik, Biophys. J. 16, 585 �1976�.
41M. G. Schrlau, N. J. Dun, and H. H. Bau, ACS Nano 3, 563 �2009�.
42I. U. Vakarelski, S. C. Brown, K. Higashitani, and B. M. Moudgil, Lang-

muir 23, 10893 �2007�.

44 Verma, Wong, and Melosh: Continuum model of mechanical interactions between biological cells 44

Biointerphases, Vol. 5, No. 2, June 2010


