Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics


The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO-) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions.


  1. 1

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  2. 2

    V. Hlady and J. Buijs, Curr. Opin. Biotechnol. 7, 72 (1996).

    Article  CAS  Google Scholar 

  3. 3

    W. B. Tsai, J. M. Grunkemeier, C. D. McFarland, and T. A. Horbett, J. Biomed. Mater. Res. 60, 348 (2002).

    Article  CAS  Google Scholar 

  4. 4

    R. A. Latour, The Encyclopedia of Biomaterials and Bioengineering, online update, (Taylor & Francis, New York, 2005). p. 1.

    Google Scholar 

  5. 5

    P. Blasi, S. Glovangnoli, A. Schoubben, M. Ricci, and C. Rossi, Adv. Drug Deliv. Rev. 59, 454 (2007).

    Article  CAS  Google Scholar 

  6. 6

    M. A. Dobrovolskaia and S. E. Mcneil, Nat. Biotechnol. 2, 469 (2007).

    Article  CAS  Google Scholar 

  7. 7

    S. J. Geelhood, T. A. Horbett, W. K. Ward, M. D. Wood, and M. J. Quinn, J. Biomed. Mater. Res., Part B: Appl. Biomater. 81B, 251 (2007).

    Article  CAS  Google Scholar 

  8. 8

    K. Lange, S. Grimm, and M. Rapp, Sens. Actuators, B 125, 441 (2007).

    Article  Google Scholar 

  9. 9

    A. Amanda, A. Kulprathipanja, M. Toennesen, and S. K. Mallapragada, J. Membr. Sci. 176, 87 (2000).

    Article  CAS  Google Scholar 

  10. 10

    R. A. Latour, Jr., Curr. Opin. Solid State Mater Sci. 4, 413 (1999).

    Article  CAS  Google Scholar 

  11. 11

    V. Raut, M. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

    Article  CAS  Google Scholar 

  12. 12

    A. R. Leach, Molecular Modelling. Principles and Applications (Pearson Education, Harlow, UK, 1996). p. 407.

    Google Scholar 

  13. 13

    M. Lisal, W. R. Smith, M. Bures, V. Vacek, and J. Navratil, Mol. Phys. 100, 2487 (2002).

    Article  CAS  Google Scholar 

  14. 14

    J. Skolnick, A. Kolinsky, D. Kihara, M. Betancourt, P. Rotkiewicz, and M. Boniecki, Proteins 45, 149 (2001).

    Article  Google Scholar 

  15. 15

    J. S. Yang, W. W. Chen, J. Skolnick, and E. I. Shakhnovich, Structure 15, 53 (2007).

    Article  Google Scholar 

  16. 16

    H. Kokubo and Y. Okamoto, J. Chem. Phys. 120, 10837 (2004).

    Article  CAS  Google Scholar 

  17. 17

    W. W. Chen, J. S. Yang, and E. I. Shakhnovich, Proteins 66, 682 (2007).

    Article  CAS  Google Scholar 

  18. 18

    J. A. Kritzer, J. Tirado-Rives, S. A. Hart, J. D. Lear, W. L. Jorgensen, and A. Schepartz, J. Am. Chem. Soc. 127, 167 (2005).

    Article  CAS  Google Scholar 

  19. 19

    D. Gront, A. Kolinski, and J. Skolnick, J. Chem. Phys. 115, 1569 (2001).

    Article  CAS  Google Scholar 

  20. 20

    C. Thachuk, A. Shmygelska, and H. H. Hoos, Bioinformatics 8, 342 (2007).

    Google Scholar 

  21. 21

    P. Liu, B. Kim, R. A. Friesner, and B. J. Berne, Proc. Natl. Acad. Sci. U.S.A. 102, 13749 (2005).

    Article  CAS  Google Scholar 

  22. 22

    M. Mezei and D. Beveridge, Ann. N. Y. Acad. Sci. 482, 1 (1986).

    Article  CAS  Google Scholar 

  23. 23

    Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).

    Article  CAS  Google Scholar 

  24. 24

    A. E. Garcia and K. Y. Sanbonmatsu, Proteins 42, 345 (2001).

    Article  CAS  Google Scholar 

  25. 25

    V. N. Vernekar and R. A. Latour, Mater. Res. Innovations 9, 337 (2005).

    CAS  Google Scholar 

  26. 26

    T. C. Beutler and W. F. Van Gunsteren, Chem. Phys. Lett. 237, 308 (1995).

    Article  CAS  Google Scholar 

  27. 27

    C. Bartels and M. Karplus, J. Phys. Chem. B 102, 865 (1998).

    Article  CAS  Google Scholar 

  28. 28

    A. R. Leach, Molecular Modelling. Principles and Applications (Pearson Education, Harlow, UK, 1996). p. 497.

    Google Scholar 

  29. 29

    M. Agashe, V. Raut, S. J. Stuart, and R. A. Latour, Langmuir 21, 1103 (2005).

    Article  CAS  Google Scholar 

  30. 30

    C. R. A. Abreu and F. A. Escobedo, J. Chem. Phys. 124, 054116 (2006).

    Article  Google Scholar 

  31. 31

    R. Affentranger, I. Tavernelli, and E. E. Di Iorio, J. Chem. Theory Comput. 2, 217 (2006).

    Article  CAS  Google Scholar 

  32. 32

    C. Bartels and M. Karplus, J. Comput. Chem. 18, 1450 (1997).

    Article  CAS  Google Scholar 

  33. 33

    D. A. McQuarrie, Statistical Thermodynamics (Harper & Row, New York, 1976). p. 35.

    Google Scholar 

  34. 34

    R. Blaak and H. Lowen, Comput. Phys. Commun. 169, 64 (2005).

    Article  CAS  Google Scholar 

  35. 35

    E. Giudice, P. Varnai, and R. Lavery, Nucleic Acids Res. 31, 1434 (2003).

    Article  CAS  Google Scholar 

  36. 36

    C. Bartels, M. Schaefer, and M. Karplus, Theor. Chem. Acc. 101, 62 (1999).

    Article  CAS  Google Scholar 

  37. 37

    C. Bartels, M. Schaefer, and M. Karplus, J. Chem. Phys. 111, 8048 (1999).

    Article  CAS  Google Scholar 

  38. 38

    R. A. Friedman and M. Mezei, J. Chem. Phys. 102, 419 (1995).

    Article  CAS  Google Scholar 

  39. 39

    S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).

    Article  CAS  Google Scholar 

  40. 40

    S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. Chem. 16, 1339 (1995).

    Article  CAS  Google Scholar 

  41. 41

    A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001).

    Article  CAS  Google Scholar 

  42. 42

    M. Nanias, C. Czaplewski, and H. A. Scheraga, J. Chem. Theory Comput. 2, 513 (2006).

    Article  CAS  Google Scholar 

  43. 43

    A. Mitsutake, Y. Sugita, and Y. Okamoto, J. Chem. Phys. 118, 6664 (2003).

    Article  CAS  Google Scholar 

  44. 44

    D. M. Zuckerman and E. Lyman, J. Chem. Theory Comput. 2, 1200 (2006).

    Article  CAS  Google Scholar 

  45. 45

    E. Gallicchio, M. Andrec, A. K. Felts, and R. M. Levy, J. Phys. Chem. B 109, 6722 (2005).

    Article  CAS  Google Scholar 

  46. 46

    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  47. 47

    R. A. Latour and L. L. Hench, Biomaterials 23, 4633 (2002).

    Article  CAS  Google Scholar 

  48. 48

    A. D. MacKerell, Jr., B. Brooks, C. L. I. Brooks, L. Nilsson, B. Roux, Y. Won, and M. Karplus, Encyclopedia of Computational Chemistry (Wiley, New York, NY, 1998). p. 271.

    Google Scholar 

  49. 49

    A. D. MacKerell, Jr., D. Bashford, M. Bellott et al., J. Phys. Chem. B 102, 3586 (1998).

    Article  CAS  Google Scholar 

  50. 50

    A. D. MacKerell, Jr., J. Comput. Chem. 25, 1584 (2004).

    Article  CAS  Google Scholar 

  51. 51

    B. A. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991).

    Article  Google Scholar 

  52. 52

    J. T. G. Overbeek, J. Colloid Interface Sci. 58, 408 (1977).

    Article  CAS  Google Scholar 

  53. 53

    J. Israelachvili, Intermolecular & Surface Forces (Academic, New York, 1992). p. 246.

    Google Scholar 

  54. 54

    J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, MA, 1977). p. 39.

    Google Scholar 

  55. 55

    F. Hartwig and B. E. Dearing, Exploratory Data Analysis (Sage Publications, London, 1979). p. 23.

    Google Scholar 

  56. 56

    B. N. Dominy and C. L. Brooks III, J. Phys. Chem. B 103, 3765 (1999).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Robert A. Latour.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, F., Stuart, S.J. & Latour, R.A. Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics. Biointerphases 3, 9–18 (2008).

Download citation