Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes (Mini Review)

Article metrics

  • 628 Accesses

  • 14 Citations

Abstract

The usefulness of nanotechnology for biotechnological applications is frequently emphasized. The recent development for using nanostructured materials as supports for free-standing lipid bilayers is briefly reviewed. The authors then demonstrate that the stability of fragile free-standing lipid bilayers in nanopores is enhanced up to days depending on the surface chemistry, the lipid composition, and the diameter of the pores. The insertion of a pore forming protein into bilayers can be monitored over time as a stepwise decrease of membrane resistance. Since membrane proteins are major drug targets, such stable and functional proteo-bilayers integrated in microfluidics are the key components of in vitro devices for drug screening. This conference paper reviews the recent literature and provides preliminary results from own research.

References

  1. 1

    D. M. Engelman, Nature (London) 438, 578 (2005).

  2. 2

    E. C. Butcher and E. Berg, Nat. Biotechnol. 22, 1253 (2004).

  3. 3

    P. Raman, V. Cherezov, and M. Caffrey, Cell. Mol. Life Sci. 63, 36 (2006).

  4. 4

    http://www.cbs.umn.edu/human/ (2007).

  5. 5

    S. Das and T. F. Smith, Adv. Protein Chem. 54, 159 (2000).

  6. 6

    E. Gounaux and R. MacKinnon, Science 310, 1461 (2005) (review).

  7. 7

    S. Benèche and B. Roux, Biophys. J. 78, 2900 (2000).

  8. 8

    R. M. Wenk, Nat. Rev. 4, 594 (2005).

  9. 9

    M. Montal and P. Müller, Proc. Natl. Acad. Sci. U.S.A. 69, 3561 (1972).

  10. 10

    P. Müller, D. O. Rudin, H. T. Tien, and W. C. Wescott, Nature (London) 194, 979 (1962).

  11. 11

    M. Montal, A. Darszon, and H. Schindler, Q. Rev. Biophys. 14, 1 (1981).

  12. 12

    P. Läuger, Science 178, 24 (1972).

  13. 13

    B. Bechinger, J. Membr. Biol. 156, 197 (1997).

  14. 14

    M. Winterhalter, Curr. Opin. Colloid Interface Sci. 5, 250 (2000).

  15. 15

    E. K. Sinner and W. Knoll, Curr. Opin. Chem. Biol. 5, 705 (2001).

  16. 16

    H. T. Tien and A. L. Ottova, Colloids Surf., A 149, 217 (1999).

  17. 17

    W. Knoll, C. W. Frank, C. Heibel, R. Neumann, A. Offenhäuser, J. Rühe, E. K. Schmidt, W. W. Shen, and A. Sinner, Rev. Mol. Biotechnol. 74, 137 (2000).

  18. 18

    H. T. Tien and A. L. Ottova, Electrochim. Acta 43, 3587 (1998).

  19. 19

    J.-B. Perez, K. L. Martinez, J.-M. Segura, and H. Vogel, Adv. Funct. Mater. 16, 306 (2006).

  20. 20

    N. Bunjes, E. K. Schmidt, A. Jonczyk, F. Rippmann, D. Beyer, H. Ringsdorf, P. Gräber, W. Knoll, and R. Naumann, Langmuir 13, 6188 (1997).

  21. 21

    E. Sackmann, Mol. Biotechnol. 74, 135 (2000).

  22. 22

    H. Lang, C. Duschl, and H. Vogel, Langmuir 10, 197 (1994).

  23. 23

    S. L. McArthur, M. W. Halter, V. Vogel, and D. G. Castner, Langmuir 19, 8316 (2003).

  24. 24

    E. A. Smith, J. W. Coym, S. M. Cowell, T. Tokimoto, V. J. Hruby, H. I. Yamamura, and M. J. Wirth, Langmuir 21, 9644 (2005).

  25. 25

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

  26. 26

    R. Naumann, A. Jonczyk, C. Hampel, H. Ringsdorf, W. Knoll, N. Bunjes, and P. Gräber, Bioelectrochem. Bioenerg. 42, 241 (1997).

  27. 27

    S. Heyse, O. P. Ernst, Z. Dienes, K. P. Hofmann, and H. Vogel, Biochemistry 37, 507 (1998).

  28. 28

    K. L. Martinez, B. H. Meyer, R. Hovius, K. Lundstrom, and H. Vogel, Langmuir 19, 10925 (2003).

  29. 29

    S. Terrettaz, M. Mayer, and H. Vogel, Langmuir 19, 5567 (2003).

  30. 30

    B. Raguse, V. Braach-Maksvytis, B. A. Cornell, L. G. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).

  31. 31

    Y. Cheng, S. D. Ogier, R. J. Bushby, and S. D. Evans, Rev. Mol. Biotechnol. 74, 159 (2000).

  32. 32

    D. W. Graininger and T. Okano, Adv. Drug Deliv. Rev. 55, 311 (2003).

  33. 33

    A. Janshoff and C. Steinem, Anal. Bioanal. Chem. 385, 433 (2006).

  34. 34

    R. Pantoja, D. Sigg, R. Blunck, F. Bezanilla, and J. R. Heath, Biophys. J. 81, 2389 (2001).

  35. 35

    S. H. White, Biophys. J. 12, 432 (1972).

  36. 36

    M. C. Peterman, J. M. Ziebarth, O. Braha, H. Bayley, H. A. Fishman, and D. M. Bloom, Biomed. Devices 4, 231 (2002).

  37. 37

    T. Stora, J. H. Lakey, and H. Vogel, Angew. Chem. Int. Ed. 38, 389 (1999).

  38. 38

    M. Mayer, J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides, Biophys. J. 85, 2684 (2003).

  39. 39

    X.-F. Kang, S. Cheley, A. C. Rice-Ficht, and H. Bayley, J. Am. Chem. Soc. 129, 4701 (2007).

  40. 40

    G. Favero, A. D’Annibale, L. Campanella, R. Santucci, and T. Ferri, Anal. Chim. Acta 460, 23 (2002).

  41. 41

    G. Favero, L. Campanella, S. Cavallo, A. D’Annibale, M. Perella, E. Mattei, and T. Ferri, J. Am. Chem. Soc. 127, 8103 (2005).

  42. 42

    J. Drexler and C. Steinem, J. Phys. Chem. B 107, 11245 (2003).

  43. 43

    W. Römer and C. Steinem, Biophys. J. 86, 955 (2004).

  44. 44

    C. Horn and C. Steinem, Biophys. J. 89, 1046 (2005).

  45. 45

    E. K. Schmitt, M. Vrouenraets, and C. Steinem, Biophys. J. 91, 2163 (2006).

  46. 46

    W. Römer, Y. H. Lam, D. Fischer, A. Watts, W. B. Fischer, P. Göring, R. B. Wehrspohn, U. Gösele, and C. Steinem, J. Am. Chem. Soc. 126, 16267 (2004).

  47. 47

    L. J. Heyderman, B. Ketterer, D. Bächle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. Tiefenauer, O. Dubochet, P. Surbled, and T. Hessler, Microelectron. Eng. 67-68, 208 (2003).

  48. 48

    X. Han, A. Studer, H. Sehr, I. Geissbühler, M. Di Berardino, F. K. Winkler, and L. Tiefenauer, Adv. Mater. 19, 4466 (2007).

  49. 49

    R. Hemmler, G. Bose, R. Wagner, and R. Peters, Biophys. J. 88, 4000 (2005).

  50. 50

    G. Puu and I. Gustafson, Biochim. Biophys. Acta 1327, 149 (1997).

  51. 51

    A. Chanturiya, E. Leikina, J. Zimmerberg, and L. V. Chernomrdik, Biophys. J. 77, 2035 (1999).

  52. 52

    A. Toby, A. Jenkins, R. J. Bushby, S. D. Evans, W. Knoll, A. Offenhäusser, and S. D. Ogier, Langmuir 18, 3176 (2002).

  53. 53

    E. Kalb, S. Frey, and L. K. Tamm, Biochim. Biophys. Acta 1103, 307 (1992).

  54. 54

    X. Han and L. Tamm, Proc. Natl. Acad. Sci. U.S.A. 97, 13097 (2000).

  55. 55

    T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, S.-Y. Jung, A. Jonczyk, and A. Offenhäuser, J. Colloid Interface Sci. 258, 298 (2003).

  56. 56

    S. Lingler, I. Rubenstein, W. Knoll, and A. Offenhäuser, Langmuir 13, 7085 (1997).

  57. 57

    J. M. Johnson, T. Ha, S. Chu, and S. G. Boxer, Biophys. J. 83, 3371 (2002).

  58. 58

    L. Kam and S. G. Boxer, Langmuir 19, 1624 (2003).

  59. 59

    N. Malmstadt, M. A. Nash, R. F. Purnell, and J. J. Schmidt, Nano Lett. 6, 1961 (2006).

  60. 60

    M. E. Sandison and H. Morgan, J. Micromech. Microeng. 15, S139 (2005).

  61. 61

    H. Suzuki, K. V. Tabata, H. Noji, and S. Takeuchi, Biosens. Bioelectron. 22, 1111 (2007).

  62. 62

    K. Funakoshi, H. Suzuki, and S. Takeuchi, Anal. Chem. 78, 8169 (2006).

  63. 63

    Z. Lei, D.Kostrewa, S. Brenèche, F. K. Winkler, and X. D. Li, Proc. Natl. Acad. Sci. U.S.A. 101, 494 (2004).

  64. 64

    M. J. Conroy, A. Durand, D. Lupo, X.-D. Li, P. A. Bullough, F. Winkler, and M. Merrick, Proc. Natl. Acad. Sci. U.S.A. 104, 1213 (2007).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article