Skip to main content

Journal for Biophysical Chemistry

Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes (Mini Review)

Abstract

The usefulness of nanotechnology for biotechnological applications is frequently emphasized. The recent development for using nanostructured materials as supports for free-standing lipid bilayers is briefly reviewed. The authors then demonstrate that the stability of fragile free-standing lipid bilayers in nanopores is enhanced up to days depending on the surface chemistry, the lipid composition, and the diameter of the pores. The insertion of a pore forming protein into bilayers can be monitored over time as a stepwise decrease of membrane resistance. Since membrane proteins are major drug targets, such stable and functional proteo-bilayers integrated in microfluidics are the key components of in vitro devices for drug screening. This conference paper reviews the recent literature and provides preliminary results from own research.

References

  1. D. M. Engelman, Nature (London) 438, 578 (2005).

    Article  CAS  Google Scholar 

  2. E. C. Butcher and E. Berg, Nat. Biotechnol. 22, 1253 (2004).

    Article  CAS  Google Scholar 

  3. P. Raman, V. Cherezov, and M. Caffrey, Cell. Mol. Life Sci. 63, 36 (2006).

    Article  CAS  Google Scholar 

  4. http://www.cbs.umn.edu/human/ (2007).

  5. S. Das and T. F. Smith, Adv. Protein Chem. 54, 159 (2000).

    Article  CAS  Google Scholar 

  6. E. Gounaux and R. MacKinnon, Science 310, 1461 (2005) (review).

    Article  Google Scholar 

  7. S. Benèche and B. Roux, Biophys. J. 78, 2900 (2000).

    Article  Google Scholar 

  8. R. M. Wenk, Nat. Rev. 4, 594 (2005).

    Article  CAS  Google Scholar 

  9. M. Montal and P. MĂ¼ller, Proc. Natl. Acad. Sci. U.S.A. 69, 3561 (1972).

    Article  CAS  Google Scholar 

  10. P. MĂ¼ller, D. O. Rudin, H. T. Tien, and W. C. Wescott, Nature (London) 194, 979 (1962).

    Article  Google Scholar 

  11. M. Montal, A. Darszon, and H. Schindler, Q. Rev. Biophys. 14, 1 (1981).

    Article  CAS  Google Scholar 

  12. P. Läuger, Science 178, 24 (1972).

    Article  Google Scholar 

  13. B. Bechinger, J. Membr. Biol. 156, 197 (1997).

    Article  CAS  Google Scholar 

  14. M. Winterhalter, Curr. Opin. Colloid Interface Sci. 5, 250 (2000).

    Article  CAS  Google Scholar 

  15. E. K. Sinner and W. Knoll, Curr. Opin. Chem. Biol. 5, 705 (2001).

    Article  CAS  Google Scholar 

  16. H. T. Tien and A. L. Ottova, Colloids Surf., A 149, 217 (1999).

    Article  CAS  Google Scholar 

  17. W. Knoll, C. W. Frank, C. Heibel, R. Neumann, A. Offenhäuser, J. RĂ¼he, E. K. Schmidt, W. W. Shen, and A. Sinner, Rev. Mol. Biotechnol. 74, 137 (2000).

    Article  CAS  Google Scholar 

  18. H. T. Tien and A. L. Ottova, Electrochim. Acta 43, 3587 (1998).

    Article  CAS  Google Scholar 

  19. J.-B. Perez, K. L. Martinez, J.-M. Segura, and H. Vogel, Adv. Funct. Mater. 16, 306 (2006).

    Article  CAS  Google Scholar 

  20. N. Bunjes, E. K. Schmidt, A. Jonczyk, F. Rippmann, D. Beyer, H. Ringsdorf, P. Gräber, W. Knoll, and R. Naumann, Langmuir 13, 6188 (1997).

    Article  CAS  Google Scholar 

  21. E. Sackmann, Mol. Biotechnol. 74, 135 (2000).

    Article  CAS  Google Scholar 

  22. H. Lang, C. Duschl, and H. Vogel, Langmuir 10, 197 (1994).

    Article  CAS  Google Scholar 

  23. S. L. McArthur, M. W. Halter, V. Vogel, and D. G. Castner, Langmuir 19, 8316 (2003).

    Article  CAS  Google Scholar 

  24. E. A. Smith, J. W. Coym, S. M. Cowell, T. Tokimoto, V. J. Hruby, H. I. Yamamura, and M. J. Wirth, Langmuir 21, 9644 (2005).

    Article  CAS  Google Scholar 

  25. M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  26. R. Naumann, A. Jonczyk, C. Hampel, H. Ringsdorf, W. Knoll, N. Bunjes, and P. Gräber, Bioelectrochem. Bioenerg. 42, 241 (1997).

    Article  CAS  Google Scholar 

  27. S. Heyse, O. P. Ernst, Z. Dienes, K. P. Hofmann, and H. Vogel, Biochemistry 37, 507 (1998).

    Article  CAS  Google Scholar 

  28. K. L. Martinez, B. H. Meyer, R. Hovius, K. Lundstrom, and H. Vogel, Langmuir 19, 10925 (2003).

    Article  CAS  Google Scholar 

  29. S. Terrettaz, M. Mayer, and H. Vogel, Langmuir 19, 5567 (2003).

    Article  CAS  Google Scholar 

  30. B. Raguse, V. Braach-Maksvytis, B. A. Cornell, L. G. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).

    Article  CAS  Google Scholar 

  31. Y. Cheng, S. D. Ogier, R. J. Bushby, and S. D. Evans, Rev. Mol. Biotechnol. 74, 159 (2000).

    Article  CAS  Google Scholar 

  32. D. W. Graininger and T. Okano, Adv. Drug Deliv. Rev. 55, 311 (2003).

    Article  Google Scholar 

  33. A. Janshoff and C. Steinem, Anal. Bioanal. Chem. 385, 433 (2006).

    Article  CAS  Google Scholar 

  34. R. Pantoja, D. Sigg, R. Blunck, F. Bezanilla, and J. R. Heath, Biophys. J. 81, 2389 (2001).

    Article  CAS  Google Scholar 

  35. S. H. White, Biophys. J. 12, 432 (1972).

    Article  CAS  Google Scholar 

  36. M. C. Peterman, J. M. Ziebarth, O. Braha, H. Bayley, H. A. Fishman, and D. M. Bloom, Biomed. Devices 4, 231 (2002).

    CAS  Google Scholar 

  37. T. Stora, J. H. Lakey, and H. Vogel, Angew. Chem. Int. Ed. 38, 389 (1999).

    Article  CAS  Google Scholar 

  38. M. Mayer, J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides, Biophys. J. 85, 2684 (2003).

    Article  CAS  Google Scholar 

  39. X.-F. Kang, S. Cheley, A. C. Rice-Ficht, and H. Bayley, J. Am. Chem. Soc. 129, 4701 (2007).

    Article  CAS  Google Scholar 

  40. G. Favero, A. D’Annibale, L. Campanella, R. Santucci, and T. Ferri, Anal. Chim. Acta 460, 23 (2002).

    Article  CAS  Google Scholar 

  41. G. Favero, L. Campanella, S. Cavallo, A. D’Annibale, M. Perella, E. Mattei, and T. Ferri, J. Am. Chem. Soc. 127, 8103 (2005).

    Article  CAS  Google Scholar 

  42. J. Drexler and C. Steinem, J. Phys. Chem. B 107, 11245 (2003).

    Article  CAS  Google Scholar 

  43. W. Römer and C. Steinem, Biophys. J. 86, 955 (2004).

    Article  Google Scholar 

  44. C. Horn and C. Steinem, Biophys. J. 89, 1046 (2005).

    Article  CAS  Google Scholar 

  45. E. K. Schmitt, M. Vrouenraets, and C. Steinem, Biophys. J. 91, 2163 (2006).

    Article  CAS  Google Scholar 

  46. W. Römer, Y. H. Lam, D. Fischer, A. Watts, W. B. Fischer, P. Göring, R. B. Wehrspohn, U. Gösele, and C. Steinem, J. Am. Chem. Soc. 126, 16267 (2004).

    Article  Google Scholar 

  47. L. J. Heyderman, B. Ketterer, D. Bächle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. Tiefenauer, O. Dubochet, P. Surbled, and T. Hessler, Microelectron. Eng. 67-68, 208 (2003).

    Article  CAS  Google Scholar 

  48. X. Han, A. Studer, H. Sehr, I. GeissbĂ¼hler, M. Di Berardino, F. K. Winkler, and L. Tiefenauer, Adv. Mater. 19, 4466 (2007).

    Article  CAS  Google Scholar 

  49. R. Hemmler, G. Bose, R. Wagner, and R. Peters, Biophys. J. 88, 4000 (2005).

    Article  CAS  Google Scholar 

  50. G. Puu and I. Gustafson, Biochim. Biophys. Acta 1327, 149 (1997).

    Article  CAS  Google Scholar 

  51. A. Chanturiya, E. Leikina, J. Zimmerberg, and L. V. Chernomrdik, Biophys. J. 77, 2035 (1999).

    Article  CAS  Google Scholar 

  52. A. Toby, A. Jenkins, R. J. Bushby, S. D. Evans, W. Knoll, A. Offenhäusser, and S. D. Ogier, Langmuir 18, 3176 (2002).

    Article  Google Scholar 

  53. E. Kalb, S. Frey, and L. K. Tamm, Biochim. Biophys. Acta 1103, 307 (1992).

    Article  CAS  Google Scholar 

  54. X. Han and L. Tamm, Proc. Natl. Acad. Sci. U.S.A. 97, 13097 (2000).

    Article  CAS  Google Scholar 

  55. T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, S.-Y. Jung, A. Jonczyk, and A. Offenhäuser, J. Colloid Interface Sci. 258, 298 (2003).

    Article  CAS  Google Scholar 

  56. S. Lingler, I. Rubenstein, W. Knoll, and A. Offenhäuser, Langmuir 13, 7085 (1997).

    Article  CAS  Google Scholar 

  57. J. M. Johnson, T. Ha, S. Chu, and S. G. Boxer, Biophys. J. 83, 3371 (2002).

    Article  CAS  Google Scholar 

  58. L. Kam and S. G. Boxer, Langmuir 19, 1624 (2003).

    Article  CAS  Google Scholar 

  59. N. Malmstadt, M. A. Nash, R. F. Purnell, and J. J. Schmidt, Nano Lett. 6, 1961 (2006).

    Article  CAS  Google Scholar 

  60. M. E. Sandison and H. Morgan, J. Micromech. Microeng. 15, S139 (2005).

    Article  CAS  Google Scholar 

  61. H. Suzuki, K. V. Tabata, H. Noji, and S. Takeuchi, Biosens. Bioelectron. 22, 1111 (2007).

    Article  CAS  Google Scholar 

  62. K. Funakoshi, H. Suzuki, and S. Takeuchi, Anal. Chem. 78, 8169 (2006).

    Article  CAS  Google Scholar 

  63. Z. Lei, D.Kostrewa, S. Brenèche, F. K. Winkler, and X. D. Li, Proc. Natl. Acad. Sci. U.S.A. 101, 494 (2004).

    Article  CAS  Google Scholar 

  64. M. J. Conroy, A. Durand, D. Lupo, X.-D. Li, P. A. Bullough, F. Winkler, and M. Merrick, Proc. Natl. Acad. Sci. U.S.A. 104, 1213 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiefenauer, L.X., Studer, A. Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes (Mini Review). Biointerphases 3, FA74–FA79 (2008). https://doi.org/10.1116/1.2912932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2912932