Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Biosensors based on release of compounds upon disruption of lipid bilayers supported on porous microspheres

Article metrics

Abstract

The authors describe a biosensing concept based on the release of compounds, which are encapsulated within lipid-coated porous silica microspheres, by detergents and toxins that disrupt supported lipid bilayers SLBs on the microspheres. Suspension and microfluidic based methods have been developed to monitor the release of the encapsulated compounds in response to membrane disruption. The authors established that the SLBs on porous microspheres can endure experimental conditions necessary for their incorporation into packed microchannels while maintaining the bilayer integrity and functionality. Model compounds including a nonionic detergent Triton X-100, a membrane active protein (α-hemolysin, and a membrane lytic antimicrobial peptide melittin were successfully utilized to interact with different formulations of SLBs on porous silica microspheres. The results demonstrate the stability of the SLBs on the microspheres for several weeks, and the feasibility of using this system to detect the release of fluorescent dyes as well as other molecular reporters. The latter were detected by their involvement in subsequent biospecific interactions that were detected by fluorescence. This study exemplifies proof of concept for developing new chemical and biochemical sensors and drug delivery systems based on the disruption of lipid membranes coating porous silica microspheres that encapsulate dyes or bioactive compounds.

References

  1. 1

    I. V. L. Eschwege, F. Toti, J.-L. Pasquali, and J.-M. Freyssinet, Clin. Exp. Immunol. 103, 171 (1996).

  2. 2

    G. E. Gilbert, D. Drinkwater, S. Barter, and S. B. Clouse, J. Biol. Chem. 267, 15861 (1992).

  3. 3

    A. R. Obringer, N. S. Rote, and A. Walter, J. Immunol. Methods 185, 81 (1995).

  4. 4

    A. Loidl-Stahlhofen, J. Schmitt, J. Nöller, T. Hartmann, H. Brodowsky, J. Schmitt, and J. Keldenich, Adv. Mater. (Weinheim, Ger.) 13, 1829 (2001).

  5. 5

    W. T. Al-Jamal and K. Kostarelos, Nanomedicine 2, 85 (2007).

  6. 6

    M. M. Baksh, M. Jaros, and J. T. Groves, Nature (London) 427, 139 (2004).

  7. 7

    T. Buranda, J. Huang, G. V. Ramarao, L. K. Ista, R. S. Larson, T. L. Ward, L. A. Sklar, and G. P. Lopez, Langmuir 19, 1654 (2003).

  8. 8

    R. W. Davis, A. Flores, T. A. Barrick, J. M. Cox, S. M. Brozik, G. P. Lopez, and J. A. Brozik, Langmuir 23, 3864 (2007).

  9. 9

    R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Radler, and S. McLaughlin, Biophys. J. 80, 2298 (2001).

  10. 10

    S. P. Moura and A. M. Carmona-Ribeiro, Cell Biochem. Biophys. 44, 446 (2006).

  11. 11

    M. E. Piyasena, T. Buranda, Y. Wu, J. Huang, L. A. Sklar, and G. P. Lopez, Anal. Chem. 76, 6266 (2004).

  12. 12

    A.-L. Troutier and C. Ladavière, Adv. Colloid Interface Sci. 133, 1 (2007).

  13. 13

    E. M. Winter and J. T. Groves, Anal. Chem. 78, 174 (2006).

  14. 14

    R. Zeineldin, M. E. Piyasena, T. S. Bergstedt, L. A. Sklar, D. Whitten, and G. P. Lopez, Cytometry Part A 69, 335 (2006).

  15. 15

    T. M. Bayerl and M. Bloom, Biophys. J. 58, 357 (1990).

  16. 16

    A. L. Troutier, T. Delair, C. Pichot, and C. Ladaviere, Langmuir 21,13055 (2005).

  17. 17

    J. Schmitt, B. Danner, and T. M. Bayerl, Langmuir 17, 244 (2001).

  18. 18

    C. P. Yu, A. N. Parikh, and J. T. Groves, Adv. Mater. Weinheim, Ger. 17, 1477 (2005).

  19. 19

    A. Schmitt, J. Nöller, and J. Schmitt, Biochim. Biophys. Acta 1768, 1389 (2007).

  20. 20

    F. M. Goni, M. A. Urbaneja, J. L. R. Arrondo, A. Alonso, A. A. Durrani, and D. Chapman, Eur. J. Biochem. 160, 659 (1986).

  21. 21

    J. Lasch Biochim. Biophys. Acta 1241, 269 (1995).

  22. 22

    R. Fussle, S. Bhakdi, A. Sziegoleit, J. Tranumjensen, T. Kranz, and H. J. Wellensiek, J. Cell Biol. 91, 83 (1981).

  23. 23

    F. Gambale and M. Montal, Biophys. J. 53, 771 (1988).

  24. 24

    S. A. Glazier, D. J. Vanderah, A. L. Plant, H. Bayley, G. Valincius, and J. J. Kasianowicz, Langmuir 16, 10428 (2000).

  25. 25

    D. H. Hoch, M. Romeromira, B. E. Ehrlich, A. Finkelstein, B. R. Dasgupta, and L. L. Simpson, Proc. Natl. Acad. Sci. U.S.A. 82, 1692 (1985).

  26. 26

    H. Ostolaza, B. Bartolome, I. O. Dezarate, F. Delacruz, and F. M. Goni, Biochim. Biophys. Acta 1147, 81 (1993).

  27. 27

    M. Palmer, I. Vulicevic, P. Saweljew, A. Valeva, M. Kehoe, and S. Bhakdi, Biochemistry 37, 2378 (1998).

  28. 28

    J. A. Killian, Biochim. Biophys. Acta 1113, 391 (1992).

  29. 29

    S. J. Ludtke, K. He, W. T. Heller, T. A. Harroun, L. Yang, and H. W. Huang, Biochemistry 35, 13723 (1996).

  30. 30

    G. Schwarz, R. T. Zong, and T. Popescu, Biochim. Biophys. Acta 1110, 97 (1992).

  31. 31

    H. Zhao, J.-P. Mattila, J. M. Holopainen, and P. K. J. Kinnunen, Biophys. J. 81, 2979 (2001).

  32. 32

    F. Picard, M. J. Paquet, E. J. Dufourc, and M. Auger, Biophys. J. 74, 857 (1998).

  33. 33

    A. Rohou, J. Nield, and Y. A. Ushkaryov, Toxicon 49, 531 (2007).

  34. 34

    P. F. Kiser, G. Wilson, and D. Needham, Nature (London) 394, 459 (1998).

  35. 35

    T. Buranda, J. Huang, V. H. Perez-Luna, B. Schreyer, L. A. Sklar, and G. P. Lopez, Anal. Chem. 74, 1149 (2002).

  36. 36

    Y. Wu, P. C. Simons, G. P. Lopez, L. A. Sklar, and T. Buranda, Anal. Biochem. 342, 221 (2005).

  37. 37

    R. Sjöback, J. Nygren, and M. Kubista, Spectrochim. Acta, Part A 51, L7 (1995).

  38. 38

    D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998).

  39. 39

    T. Buranda, G. M. Jones, J. P. Nolan, J. Keij, G. P. Lopez, and L. A. Sklar, J. Phys. Chem. B 103, 3399 (1999).

  40. 40

    G. A. Parks, Chem. Rev. Washington, D.C. 65, 177 (1965).

  41. 41

    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. Plenum, New York, (1999).

  42. 42

    See www.avantilipids.com for technical information.

  43. 43

    M. Anderson and A. Omri, Adv. Drug Delivery Rev. 11, 33 (2004).

  44. 44

    S. Bhakdi, J. Tranumjensen, and A. Sziegoleit, Infect. Immun. 47, 52 (1985).

  45. 45

    S. J. Moench, J. Moreland, D. H. Stewart, and T. G. Dewey, Biochemistry 33, 5791 (1994).

  46. 46

    S. Rex, J. Bian, J. R. Silvius, and M. Lafleur Biochim. Biophys. Acta 1558, 211 (2002).

  47. 47

    See http://www.ncbi.nlm.nih.gov for -hemolysin Accession No. AAA26598 and alpha-toxin Accession No. P09616.

  48. 48

    L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux, Science 274, 1859 (1996).

  49. 49

    J. P. Arbuthnott, J. H. Freer, and A. W. Bernheimer, J. Bacteriol. 94, 1170 (1967).

  50. 50

    M. Moayeri and R. A. Welch, Infect. Immun. 62, 4124 (1994).

  51. 51

    V. Noireaux and A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 101, 17669 (2004).

  52. 52

    B. S. Edwards, T. Oprea, E. R. Prossnitz, and L. A. Sklar, Curr. Opin. Chem. Biol. 8, 392 (2004).

  53. 53

    J. P. Nolan and L. A. Sklar, Trends Biotechnol. 20, 9 (2002).

  54. 54

    L. A. Sklar, B. S. Edwards, S. W. Graves, J. P. Nolan, and E. R. Prossnitz, Annu. Rev. Biophys. Biomol. Struct. 31, 97 (2002).

  55. 55

    A. S. Ladokhin, M. E. Selsted, and S. H. White, Biophys. J. 72, 1762 (1997).

  56. 56

    N. Papo and Y. Shai, Biochemistry 42, 458 (2003).

  57. 57

    A. S. Ladokhin and S. H. White Biochim. Biophys. Acta 1514, 253 (2001).

  58. 58

    T. Benachir and M. Lafleur Biochim. Biophys. Acta 1235, 452 (1995).

  59. 59

    D. K. Hincha and J. H. Crowe Biochim. Biophys. Acta 1284, 162 (1996).

  60. 60

    R. P. Richter and A. R. Brisson, Biophys. J. 88, 3422 (2005).

  61. 61

    R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005).

  62. 62

    D. C. Lee, B. J. Chang, L. P. Yu, S. L. Frey, K. Y. C. Lee, S. Patchipulusu, and C. Hall, Langmuir 20, 11297 (2004).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article