Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections.
Science 1999, 284:1318–1322.
Article
CAS
Google Scholar
Neoh KG, Kang ET: Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications.
ACS Appl Mater Interfaces 2011, 3:2808–2819.
Article
CAS
Google Scholar
Charnley M, Textor M, Acikgoz C: Designed polymer structures with antifouling-antimicrobial properties.
React Funct Polym 2011, 71:329–334.
Article
CAS
Google Scholar
Pidhatika B, Möller J, Benetti EM, Konradi R, Rakhmatullina E, Mühlebach A, Zimmermann R, Werner C, Vogel V, Textor M: The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films.
Biomaterials 2010, 31:9462–9472.
Article
CAS
Google Scholar
Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Leong SSJ, Chan-Park MB: A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability.
Nature Mater 2011, 10:149–156.
Article
CAS
Google Scholar
Kang S, Pinault M, Pfefferle LD, Elimelech M: Single-walled carbon nanotubes exhibit strong antimicrobial activity.
Langmuir 2007, 23:8670–8673.
Article
CAS
Google Scholar
Parreira P, Magalhães A, Gonçalves IC, Gomes J, Vidal R, Reis CA, Leckband DE, Martins MCL: Effect of surface chemistry on bacterial adhesion, viability, and morphology.
J Biomed Mater Res, Part A 2011, 99:344–353.
Article
Google Scholar
Schiffman JD, Elimelech M: Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes.
ACS Appl Mater Interfaces 2011, 3:462–468.
Article
CAS
Google Scholar
Klibanov AM: Permanently microbicidal materials coatings.
J Mater Chem 2007, 17:2479–2482.
Article
CAS
Google Scholar
Kenawy E-R, Worley SD, Broughton R: The chemistry and applications of antimicrobial polymers: A state-of-the-art review.
Biomacromolecules 2007, 8:1359–1384.
Article
CAS
Google Scholar
Postgate JR: Viable counts and Viability.
Method Microbiol 1969, 1:611–628.
Article
Google Scholar
Davey HM: Life, death, and in-between: Meanings and methods in microbiology.
Appl Environ Microbiol 2011, 77:5571–5576.
Article
CAS
Google Scholar
Kaprelyants AS, Gottschal JC, Kell DB: Dormancy in non-sporulating bacteria.
FEMS Microbiol Rev 1993, 10:271–285.
CAS
Google Scholar
Sträuber H, Müller S: Viability states of bacteria–specific mechanisms of selected probes.
Cytom Part A 2010, 77:623–634.
Article
Google Scholar
Kennedy D, Cronin UP, Wilkinson MG: Responses of
Escherichia coli
,
Listeria monocytogenes
, and
Staphylococcus aureus
to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting.
Appl Environ Microbiol 2011, 77:4657–4668.
Article
CAS
Google Scholar
Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.
Water Res 2008, 42:3066–3074.
Article
CAS
Google Scholar
Asadishad B, Ghoshal S, Tufenkji N: Method for the direct observation and quantification of survival of bacteria attached to negatively or positively charged surfaces in an aqueous medium.
Environ Sci Technol 2011, 45:8345–8351.
Article
CAS
Google Scholar
Deligeorgiev TG, Kaloyanova S: Intercalating cyanine dyes for nucleic acid detection.
Recent Pat Mater Sci 2009, 2:1–26.
Article
CAS
Google Scholar
Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T: Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry.
Appl Environ Microbiol 2007, 73:3283–3290.
Article
CAS
Google Scholar
Stocks SM: Mechanism and use of the commercially available viability stain, BacLight.
Cytom Part A 2004, 61:189–195.
CAS
Google Scholar
Lehtinen J, Nuutila J, Lilius E-M: Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability.
Cytom Part A 2004, 60:165–172.
Google Scholar
Xie X, Möller J, Konradi R, Kisielow M, Franco-Obregón A, Nyfeler E, Mühlebach A, Chabria M, Textor M, Lu Z, Reimhult E: Automated time-resolved analysis of bacteria-substrate interactions using functionalized microparticles and flow cytometry.
Biomaterials 2011, 32:4347–4357.
Article
CAS
Google Scholar
Green J-BD, Bickner S, Carter PW, Fulghum T, Luebke M, Nordhaus MA, Strathmann S: Antimicrobial testing for surface-immobilized agents with a surface-separated live-dead staining method.
Biotechnol Bioeng 2010, 108:231–236.
Article
Google Scholar
Blomfield IC, McClain MS, Eisenstein BI: Type 1 fimbriae mutants of
Escherichia coli
K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants.
Mol Microbiol 1991, 5:1439–1445.
Article
CAS
Google Scholar
Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U: A comprehensive library of fluorescent transcriptional reporters for
Escherichia coli
.
Nat Methods 2006, 3:623–628.
Article
CAS
Google Scholar
Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R: LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water.
J Microbiol Methods 1999, 37:77–86.
Article
CAS
Google Scholar
Isquith AJ, Abbott EA, Walters PA: Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride.
Appl Microbiol 1972, 24:859–863.
CAS
Google Scholar
Pei J, Hall H, Spencer ND: The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide.
Biomaterials 2011, 32:8968–8978.
Article
CAS
Google Scholar
Vlamakis H, Aguilar C, Losick R, Kolter R: Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev 2008, 22:945–953.
Article
CAS
Google Scholar
Resch A, Rosenstein R, Nerz C, Götz F: Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions.
Appl Environ Microbiol 2005, 71:2663–2676.
Article
CAS
Google Scholar
Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JAJ, Molin S, Prensier G, Arbeille B, Ghigo J-M: Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression.
Mol Microbiol 2004, 51:659–674.
Article
CAS
Google Scholar
Branda SS, Vik S, Friedman L, Kolter R: Biofilms: the matrix revisited.
Trends Microbiol 2005, 13:20–26.
Article
CAS
Google Scholar
Flemming H-C, Wingender J: The biofilm matrix.
Nat Rev Microbiol 2010, 8:623–633.
CAS
Google Scholar
Banning N, Toze S, Mee BJ: Escherichia coli survival in groundwater and effluent measured using a combination of propidium iodide and the green fluorescent protein.
J Appl Microbiol 2002, 93:69–76.
Article
CAS
Google Scholar
Tiller JC, Liao CJ, Lewis K, Klibanov AM: Designing surfaces that kill bacteria on contact.
PNAS 2001, 98:5981–5985.
Article
CAS
Google Scholar
Benoit MR, Conant CG, Ionescu-Zanetti C, Schwartz M, Matin A: New device for high-throughput viability screening of flow biofilms.
Appl Environ Microbiol 2010, 76:4136–4142.
Article
CAS
Google Scholar
Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S: In vitro biofilm formation of commensal and pathogenic
Escherichia coli
strains: impact of environmental and genetic factors.
J Bacteriol 2006, 188:3572–3581.
Article
CAS
Google Scholar
Anderson BN, Ding AM, Nilsson LM, Kusuma K, Tchesnokova V, Vogel V, Sokurenko EV, Thomas WE: Weak rolling adhesion enhances bacterial surface colonization.
J Bacteriol 2007, 189:1794–1802.
Article
CAS
Google Scholar
Rodrigues DF, Elimelech M: Role of type 1 fimbriae and mannose in the development of
Escherichia coli
K12 biofilm: from initial cell adhesion to biofilm formation.
Biofouling 2009, 25:401–411.
Article
CAS
Google Scholar
Miroux B, Walker JE: Over-production of proteins in
Escherichia coli
: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels.
J Mol Biol 1996, 260:289–298.
Article
CAS
Google Scholar
Tombolini R, Unge A, Davey ME, Bruijn FJ, Jansson JK: Flow cytometric and microscopic analysis of GFP‒tagged
Pseudomonas fluorescens
bacteria.
FEMS Microbiol Ecol 1997, 22:17–28.
Article
CAS
Google Scholar
Tsien RY: The green fluorescent protein.
Annu Rev Biochem 1998, 67:509–544.
Article
CAS
Google Scholar
Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S: New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria.
Appl Environ Microbiol 1998, 64:2240–2246.
CAS
Google Scholar
Aspiras MB, Kazmerzak KM, Kolenbrander PE, McNab R, Hardegen N, Jenkinson HF: Expression of green fluorescent protein in
Streptococcus gordonii
DL1 and its use as a species-specific marker in coadhesion with
Streptococcus oralis
34 in saliva-conditioned biofilms in vitro.
Appl Environ Microbiol 2000, 66:4074–4083.
Article
CAS
Google Scholar
Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ: Localized gene expression in
Pseudomonas aeruginosa
biofilms.
Appl Environ Microbiol 2008, 74:4463–4471.
Article
CAS
Google Scholar
Malone CL, Boles BR, Lauderdale KJ, Thoendel M, Kavanaugh JS, Horswill AR: Fluorescent reporters for
Staphylococcus aureus
.
J Microbiol Methods 2009, 77:251–260.
Article
CAS
Google Scholar
Ma L, Zhang G, Doyle MP: Green Fluorescent Protein labeling of
Listeria
,
Salmonella
, and
Escherichia coli O157:H7
for safety-related studies.
PLoS One 2011, 6:e18083.
Article
CAS
Google Scholar
Berg CM, Berg DE: Transposable element tools for microbial genetics. In EcoSal - Escherichia coli and Salmonella: Cellular and Molecular Biology. Edited by: A B, Curtiss I, R, Kasper JB, Karp PD, Neidhardt FC, Nyström T, Slauch JM, Squires CL, Ussery D. Washington, DC: ASM Press; 1996. http://www.ecosal.org
Google Scholar
Kües U, Stahl U: Replication of plasmids in gram-negative bacteria.
Microbiol Rev 1989, 53:491–516.
Google Scholar
Summers DK, Sherratt DJ: Bacterial plasmid stability.
Bioessays 1985, 2:209–211.
Article
CAS
Google Scholar
Ayala-Sanmartín J, Gómez-Eichelmann MC: Stability of ColE1-like and pBR322-like plasmids in
Escherichia coli
.
Mol Microbiol 1989, 3:1745–1752.
Article
Google Scholar